BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 8612596)

  • 1. Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast.
    Gangloff S; Zou H; Rothstein R
    EMBO J; 1996 Apr; 15(7):1715-25. PubMed ID: 8612596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase in incidence of chromosome instability and non-conservative recombination between repeats in Saccharomyces cerevisiae hpr1 delta strains.
    Santos-Rosa H; Aguilera A
    Mol Gen Genet; 1994 Oct; 245(2):224-36. PubMed ID: 7816031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II.
    Christman MF; Dietrich FS; Fink GR
    Cell; 1988 Nov; 55(3):413-25. PubMed ID: 2902925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication fork block protein, Fob1, acts as an rDNA region specific recombinator in S. cerevisiae.
    Johzuka K; Horiuchi T
    Genes Cells; 2002 Feb; 7(2):99-113. PubMed ID: 11895475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of DNA repair genes in recombination between repeated sequences in yeast.
    Liefshitz B; Parket A; Maya R; Kupiec M
    Genetics; 1995 Aug; 140(4):1199-211. PubMed ID: 7498763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of rDNA stability by sumoylation.
    Eckert-Boulet N; Lisby M
    DNA Repair (Amst); 2009 Apr; 8(4):507-16. PubMed ID: 19261548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Both CAG repeats and inverted DNA repeats stimulate spontaneous unequal sister-chromatid exchange in Saccharomyces cerevisiae.
    Nag DK; Suri M; Stenson EK
    Nucleic Acids Res; 2004; 32(18):5677-84. PubMed ID: 15494455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of mutations in SGS1 and in genes functionally related to SGS1 on inverted repeat-stimulated spontaneous unequal sister-chromatid exchange in yeast.
    Nag DK; Cavallo SJ
    BMC Mol Biol; 2007 Dec; 8():120. PubMed ID: 18166135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinational substrates designed to study recombination between unique and repetitive sequences in vivo.
    Fasullo MT; Davis RW
    Proc Natl Acad Sci U S A; 1987 Sep; 84(17):6215-9. PubMed ID: 3306671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the inverted repeat of the yeast 2-micron plasmid in Flp site-specific and RAD52-dependent homologous recombination.
    Storici F; Bruschi CV
    Mol Gen Genet; 2000 Feb; 263(1):81-9. PubMed ID: 10732676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CTD kinase I is required for the integrity of the rDNA tandem array.
    Grenetier S; Bouchoux C; Goguel V
    Nucleic Acids Res; 2006; 34(17):4996-5006. PubMed ID: 16984969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks.
    Larionov V; Kouprina N; Eldarov M; Perkins E; Porter G; Resnick MA
    Yeast; 1994 Jan; 10(1):93-104. PubMed ID: 8203155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RAD52-dependent and -independent homologous recombination initiated by Flp recombinase at a single FRT site flanked by direct repeats.
    Prado F; González-Barrera S; Aguilera A
    Mol Gen Genet; 2000 Feb; 263(1):73-80. PubMed ID: 10732675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes.
    Tran HT; Degtyareva NP; Koloteva NN; Sugino A; Masumoto H; Gordenin DA; Resnick MA
    Mol Cell Biol; 1995 Oct; 15(10):5607-17. PubMed ID: 7565712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of YACs containing ribosomal or RCP/GCP locus DNA in wild-type S. cerevisiae and RAD mutant strains.
    Kohno K; Wada M; Schlessinger D; D'Urso M; Tanabe S; Oshiro T; Imamoto F
    DNA Res; 1994; 1(4):191-9. PubMed ID: 8535977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I.
    Kobayashi T; Heck DJ; Nomura M; Horiuchi T
    Genes Dev; 1998 Dec; 12(24):3821-30. PubMed ID: 9869636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of DNA cis elements essential for expansion of ribosomal DNA repeats in Saccharomyces cerevisiae.
    Kobayashi T; Nomura M; Horiuchi T
    Mol Cell Biol; 2001 Jan; 21(1):136-47. PubMed ID: 11113188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes.
    Butler DK; Yasuda LE; Yao MC
    Cell; 1996 Dec; 87(6):1115-22. PubMed ID: 8978615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombination proteins in yeast.
    Krogh BO; Symington LS
    Annu Rev Genet; 2004; 38():233-71. PubMed ID: 15568977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human topoisomerase I mediates illegitimate recombination leading to DNA insertion into the ribosomal DNA locus in Saccharomyces cerevisiae.
    Zhu J; Schiestl RH
    Mol Genet Genomics; 2004 Apr; 271(3):347-58. PubMed ID: 15007730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.