These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 861261)

  • 1. [Mathematical model of adaptation of the energy metabolism of a cell. Calculation of the influence of ATP on the activity and concentration of the initiator stage enzyme].
    Kaĭmachnikov NP; Sel'kov EE
    Biofizika; 1977; 22(2):241-6. PubMed ID: 861261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mathematical model for energy metabolism in erythrocytes. Independence of scaled glycolytic characteristics of individual features of the donors].
    Ataullakhanov FI; Buravtsev VN; Vitvitskiĭ VM; Dibrov BF; Zhabotinskiĭ AM
    Biokhimiia; 1980 Jul; 45(7):1267-73. PubMed ID: 6452178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mathematical model for carbohydrate energy metabolism. Mechanism of the Pasteur effect].
    Khainrikh R; Dynnik VV; Sel'kov EE
    Biokhimiia; 1980 Jun; 45(6):963-73. PubMed ID: 6452176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modeling of mitochondrial energy transduction.
    Bohnensack R
    Biomed Biochim Acta; 1985; 44(6):853-62. PubMed ID: 2931077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mathematical model of carbohydrate energy metabolism. Interaction between glycolysis, the Krebs cycle and the H-transporting shuttles at varying ATPase load].
    Dynnik VV; Khaĭnrikh R; Sel'kov EE
    Biokhimiia; 1980 May; 45(5):771-82. PubMed ID: 6445762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The economy of protein maintenance in the living cell].
    Reich JG
    Biomed Biochim Acta; 1983; 42(7-8):839-48. PubMed ID: 6651806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of water in processes of energy transduction: Ca2+-transport ATPase and inorganic pyrophosphatase.
    de Meis L
    Biochem Soc Symp; 1985; 50():97-125. PubMed ID: 2428374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary "in vivo" state and of time dependent variations under blood preservation conditions.
    Werner A; Heinrich R
    Biomed Biochim Acta; 1985; 44(2):185-212. PubMed ID: 4004830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of metabolic memory in the ATP paradox and energy homeostasis.
    Aledo JC; Jiménez-Rivérez S; Cuesta-Munoz A; Romero JM
    FEBS J; 2008 Nov; 275(21):5332-42. PubMed ID: 18803663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio.
    Bohnensack R
    Biomed Biochim Acta; 1984; 43(4):403-11. PubMed ID: 6487276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of a simple open biochemical reaction S leads to P by means of E interacting with an enzyme-producing system].
    Sel'kov EE; Nazarenko VG
    Biofizika; 1980; 25(6):1006-10. PubMed ID: 7448210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture.
    Seraydarian MW
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():181-90. PubMed ID: 1215636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions.
    Zeng AP; Deckwer WD
    Biotechnol Prog; 1995; 11(1):71-9. PubMed ID: 7765990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transitions between alternate ATP-producing and ATP-consuming stationary states in a reconstituted enzyme system containing phosphofructokinase.
    Eschrich K; Schellenberger W; Hofmann E
    Acta Biol Med Ger; 1982; 41(5):415-24. PubMed ID: 6215809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The selfish brain: competition for energy resources.
    Peters A; Schweiger U; Pellerin L; Hubold C; Oltmanns KM; Conrad M; Schultes B; Born J; Fehm HL
    Neurosci Biobehav Rev; 2004 Apr; 28(2):143-80. PubMed ID: 15172762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of the modifying effect of ATP on Na(+)-K+ ATPase.
    Boldyrev AA; Fedosova NU; Lopina OD
    Biomed Sci; 1991; 2(5):450-4. PubMed ID: 1668643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis.
    Slepenkov SV; Witt SN
    Biochemistry; 1998 Jan; 37(4):1015-24. PubMed ID: 9454592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.