These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 861261)
21. [Description of the kinetics of the two substrate reactions S1+S2 goes to and comes from S3+S4 by a generalized Monod, Wyman, Changeux model]. Popova SV; Sel'kov EE Mol Biol (Mosk); 1979; 13(1):129-39. PubMed ID: 156878 [TBL] [Abstract][Full Text] [Related]
22. [Energy characteristics of an ATP-hydrolase reaction catalyzed by solubilized Ca2+,Mg2+-ATPase from smooth muscle cell membrane]. Kosterin SA; Slinchenko NN; Gergalova GL Biokhimiia; 1994 Jun; 59(6):889-904. PubMed ID: 8075253 [TBL] [Abstract][Full Text] [Related]
23. Induction of energy metabolism related enzymes in yeast Saccharomyces cerevisiae exposed to ibogaine is adaptation to acute decrease in ATP energy pool. Paskulin R; Jamnik P; Obermajer N; Slavić M; Strukelj B Eur J Pharmacol; 2010 Feb; 627(1-3):131-5. PubMed ID: 19853595 [TBL] [Abstract][Full Text] [Related]
24. [Excitation of the hydrogen bond by the energy of hydrolysis of adenosine-5'-triphosphate]. Bespalova SV; Tolpygo KB Biofizika; 1998; 43(3):484-9. PubMed ID: 9702342 [TBL] [Abstract][Full Text] [Related]
25. [Model of physiological thermoregulation]. Rostopshin IuA; Klimovitskiĭ VIa Biofizika; 1979; 24(5):885-92. PubMed ID: 486565 [TBL] [Abstract][Full Text] [Related]
26. A model for the cooperative free energy transduction and kinetics of ATP hydrolysis by F1-ATPase. Gao YQ; Yang W; Marcus RA; Karplus M Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11339-44. PubMed ID: 14500780 [TBL] [Abstract][Full Text] [Related]
28. [Calmodulin can induce and control damping oscillations in the plasma membrane Ca2+ -ATPase activity: a kinetic model]. Gol'dshtein BN; Aksirov AM; Zakrzhevskaia DT Biofizika; 2007; 52(6):1067-72. PubMed ID: 18225659 [TBL] [Abstract][Full Text] [Related]
29. Kinetics of extracellular ATP from goldfish hepatocytes: a lesson from mathematical modeling. Chara O; Pafundo DE; Schwarzbaum PJ Bull Math Biol; 2009 Jul; 71(5):1025-47. PubMed ID: 19263175 [TBL] [Abstract][Full Text] [Related]
30. Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components. Bohl E; Shuman HA; Boos W J Theor Biol; 1995 Jan; 172(1):83-94. PubMed ID: 7891451 [TBL] [Abstract][Full Text] [Related]
31. [Quantitative kinetic model of ATP hydrolysis-synthesis by membrane H+-ATPase]. Kister AE; Mironov AA; Drozdov-Tikhomirov LV Mol Biol (Mosk); 1984; 18(6):1476-85. PubMed ID: 6240592 [TBL] [Abstract][Full Text] [Related]
32. [Possible mechanism of ATP formation in energy-transforming biological membranes]. Bliumenfel'd LA; Tikhonov AN Biofizika; 1987; 32(5):800-13. PubMed ID: 2891381 [TBL] [Abstract][Full Text] [Related]
33. [Stabilization of the relative concentration of ATP and invariants in the regulation of erythrocyte energy metabolism]. Kholodenko BN Biofizika; 1980; 25(2):258-64. PubMed ID: 6445212 [TBL] [Abstract][Full Text] [Related]
34. [Qualitative analysis of a mathematical model of a open enzyme reaction]. Kaĭmachnikov NP Biofizika; 1978; 23(2):247-52. PubMed ID: 647034 [TBL] [Abstract][Full Text] [Related]
35. [Comparative theoretic analysis of an open reaction S1 goes to and comes from S2 E(R,T) in which the oligomeric enzyme E(R,T) is isosterically or allosterically activated by the product S2]. Sel'kov EE; Dynnik SN Mol Biol (Mosk); 1978; 12(5):1122-38. PubMed ID: 739997 [TBL] [Abstract][Full Text] [Related]
36. Practical identifiability of growth and substrate consumption models. Nihtilä M; Virkkunen J Biotechnol Bioeng; 1977 Dec; 19(12):1831-50. PubMed ID: 563249 [TBL] [Abstract][Full Text] [Related]
37. Metabolic regulation and mathematical models. Heinrich R; Rapoport SM; Rapoport TA Prog Biophys Mol Biol; 1977; 32(1):1-82. PubMed ID: 343173 [No Abstract] [Full Text] [Related]
38. A simulation study of oscillating glycolysis: a comparison between a model and experiments. Richter O; Vohmann HJ; Betz A Chronobiologia; 1978; 5(1):56-65. PubMed ID: 688850 [TBL] [Abstract][Full Text] [Related]
39. Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints. Heinrich R; Montero F; Klipp E; Waddell TG; Meléndez-Hevia E Eur J Biochem; 1997 Jan; 243(1-2):191-201. PubMed ID: 9030739 [TBL] [Abstract][Full Text] [Related]
40. Mathematical analysis of kinetic data from enzyme reaction in the steady state. Feraudi M; Glaser W Ital J Biochem; 1977; 26(1):22-6. PubMed ID: 266487 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]