These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 8612767)
1. Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein. Kort R; Vonk H; Xu X; Hoff WD; Crielaard W; Hellingwerf KJ FEBS Lett; 1996 Mar; 382(1-2):73-8. PubMed ID: 8612767 [TBL] [Abstract][Full Text] [Related]
2. Trans/cis (Z/E) photoisomerization of the chromophore of photoactive yellow protein is not a prerequisite for the initiation of the photocycle of this photoreceptor protein. Cordfunke R; Kort R; Pierik A; Gobets B; Koomen GJ; Verhoeven JW; Hellingwerf KJ Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7396-401. PubMed ID: 9636160 [TBL] [Abstract][Full Text] [Related]
3. Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis Isomerization of the chromophore in the protein. Groenhof G; Bouxin-Cademartory M; Hess B; De Visser SP; Berendsen HJ; Olivucci M; Mark AE; Robb MA J Am Chem Soc; 2004 Apr; 126(13):4228-33. PubMed ID: 15053611 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations of photoactive yellow protein (PYP) in three states of its photocycle: a comparison with X-ray and NMR data and analysis of the effects of Glu46 deprotonation and mutation. Antes I; Thiel W; van Gunsteren WF Eur Biophys J; 2002 Dec; 31(7):504-20. PubMed ID: 12451420 [TBL] [Abstract][Full Text] [Related]
5. Resonance Raman spectroscopy and quantum chemical calculations reveal structural changes in the active site of photoactive yellow protein. Unno M; Kumauchi M; Sasaki J; Tokunaga F; Yamauchi S Biochemistry; 2002 Apr; 41(17):5668-74. PubMed ID: 11969428 [TBL] [Abstract][Full Text] [Related]
6. pH Dependence of the photoactive yellow protein photocycle recovery reaction reveals a new late photocycle intermediate with a deprotonated chromophore. Hendriks J; Hellingwerf KJ J Biol Chem; 2009 Feb; 284(8):5277-88. PubMed ID: 19091750 [TBL] [Abstract][Full Text] [Related]
7. Chemical reactivity and spectroscopy of the thiol ester-linked p-coumaric acid chromophore in the photoactive yellow protein from Ectothiorhodospira halophila. Hoff WD; Devreese B; Fokkens R; Nugteren-Roodzant IM; Van Beeumen J; Nibbering N; Hellingwerf KJ Biochemistry; 1996 Jan; 35(4):1274-81. PubMed ID: 8573584 [TBL] [Abstract][Full Text] [Related]
8. Initial steps of signal generation in photoactive yellow protein revealed with femtosecond mid-infrared spectroscopy. Groot ML; van Wilderen LJ; Larsen DS; van der Horst MA; van Stokkum IH; Hellingwerf KJ; van Grondelle R Biochemistry; 2003 Sep; 42(34):10054-9. PubMed ID: 12939133 [TBL] [Abstract][Full Text] [Related]
9. Photo-isomerization of the isolated photoactive yellow protein chromophore: what comes before the primary step? Anstöter CS; Curchod BFE; Verlet JRR Phys Chem Chem Phys; 2022 Jan; 24(3):1305-1309. PubMed ID: 34984423 [TBL] [Abstract][Full Text] [Related]
10. Role of Photoisomerization on the Photodetachment of the Photoactive Yellow Protein Chromophore. Henley A; Patel AM; Parkes MA; Anderson JC; Fielding HH J Phys Chem A; 2018 Oct; 122(41):8222-8228. PubMed ID: 30234981 [TBL] [Abstract][Full Text] [Related]
11. Resonance Raman evidence that the thioester-linked 4-hydroxycinnamyl chromophore of photoactive yellow protein is deprotonated. Kim M; Mathies RA; Hoff WD; Hellingwerf KJ Biochemistry; 1995 Oct; 34(39):12669-72. PubMed ID: 7548018 [TBL] [Abstract][Full Text] [Related]
13. Sensitive circular dichroism marker for the chromophore environment of photoactive yellow protein: assignment of the 307 and 318 nm bands to the n --> pi* transition of the carbonyl. Borucki B; Otto H; Meyer TE; Cusanovich MA; Heyn MP J Phys Chem B; 2005 Jan; 109(1):629-33. PubMed ID: 16851055 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of and intermediates in a photocycle branching reaction of the photoactive yellow protein from Ectothiorhodospira halophila. Hendriks J; van Stokkum IH; Crielaard W; Hellingwerf KJ FEBS Lett; 1999 Sep; 458(2):252-6. PubMed ID: 10481075 [TBL] [Abstract][Full Text] [Related]
15. Controlling radical formation in the photoactive yellow protein chromophore. Mooney CR; Parkes MA; Iskra A; Fielding HH Angew Chem Int Ed Engl; 2015 May; 54(19):5646-9. PubMed ID: 25782419 [TBL] [Abstract][Full Text] [Related]
16. Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily. Imamoto Y; Kataoka M Photochem Photobiol; 2007; 83(1):40-9. PubMed ID: 16939366 [TBL] [Abstract][Full Text] [Related]
17. Signal transduction in the photoactive yellow protein. I. Photon absorption and the isomerization of the chromophore. Groenhof G; Lensink MF; Berendsen HJ; Snijders JG; Mark AE Proteins; 2002 Aug; 48(2):202-11. PubMed ID: 12112689 [TBL] [Abstract][Full Text] [Related]
18. Glu46 donates a proton to the 4-hydroxycinnamate anion chromophore during the photocycle of photoactive yellow protein. Xie A; Hoff WD; Kroon AR; Hellingwerf KJ Biochemistry; 1996 Nov; 35(47):14671-8. PubMed ID: 8942626 [TBL] [Abstract][Full Text] [Related]
19. Gas-phase photochemistry of the photoactive yellow protein chromophore trans-p-coumaric acid. Ryan WL; Gordon DJ; Levy DH J Am Chem Soc; 2002 May; 124(21):6194-201. PubMed ID: 12022854 [TBL] [Abstract][Full Text] [Related]
20. Reconstitution photoactive yellow protein from apoprotein and p-coumaric acid derivatives. Imamoto Y; Ito T; Kataoka M; Tokunaga F FEBS Lett; 1995 Oct; 374(2):157-60. PubMed ID: 7589524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]