BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8613197)

  • 1. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide.
    Brosnihan KB; Li P; Ferrario CM
    Hypertension; 1996 Mar; 27(3 Pt 2):523-8. PubMed ID: 8613197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide.
    Li P; Chappell MC; Ferrario CM; Brosnihan KB
    Hypertension; 1997 Jan; 29(1 Pt 2):394-400. PubMed ID: 9039133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin 1-7 induces bradykinin-mediated relaxation in porcine coronary artery.
    Gorelik G; Carbini LA; Scicli AG
    J Pharmacol Exp Ther; 1998 Jul; 286(1):403-10. PubMed ID: 9655885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin-(1-7): a novel vasodilator of the coronary circulation.
    Brosnihan KB; Li P; Tallant EA; Ferrario CM
    Biol Res; 1998; 31(3):227-34. PubMed ID: 9830510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation.
    Seyedi N; Xu X; Nasjletti A; Hintze TH
    Hypertension; 1995 Jul; 26(1):164-70. PubMed ID: 7607720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of nitric oxide by angiotensin-(1-7) from porcine coronary endothelium: implications for a novel angiotensin receptor.
    Pörsti I; Bara AT; Busse R; Hecker M
    Br J Pharmacol; 1994 Mar; 111(3):652-4. PubMed ID: 8019744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of bradykinin, AT2 and angiotensin 1-7 receptors in the EDRF-dependent vasodilator effect of angiotensin II on the isolated mesenteric vascular bed of the rat.
    Soares de Moura R; Resende AC; Emiliano AF; Tano T; Mendes-Ribeiro AC; Correia ML; de Carvalho LC
    Br J Pharmacol; 2004 Mar; 141(5):860-6. PubMed ID: 14757704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin-(1-7) causes endothelium-dependent relaxation in canine middle cerebral artery.
    Feterik K; Smith L; Katusic ZS
    Brain Res; 2000 Aug; 873(1):75-82. PubMed ID: 10915812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local action of the renin angiotensin system in the porcine ophthalmic circulation: effects of ACE-inhibitors and angiotensin receptor antagonists.
    Meyer P; Flammer J; Lüscher TF
    Invest Ophthalmol Vis Sci; 1995 Mar; 36(3):555-62. PubMed ID: 7890486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiotensin-(1-7) reduces norepinephrine release through a nitric oxide mechanism in rat hypothalamus.
    Gironacci MM; Vatta M; Rodriguez-Fermepín M; Fernández BE; Peña C
    Hypertension; 2000 Jun; 35(6):1248-52. PubMed ID: 10856272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function.
    Zhang C; Hein TW; Wang W; Kuo L
    Circ Res; 2003 Feb; 92(3):322-9. PubMed ID: 12595345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinins or nitric oxide, or both, are involved in the antitrophic effects of angiotensin converting enzyme inhibitors on diabetes-associated mesenteric vascular hypertrophy in the rat.
    Rumble JR; Komers R; Cooper ME
    J Hypertens; 1996 May; 14(5):601-7. PubMed ID: 8762203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonpeptide angiotensin II antagonist losartan inhibits thromboxane A2-induced contractions in canine coronary arteries.
    Li P; Ferrario CM; Brosnihan KB
    J Pharmacol Exp Ther; 1997 Jun; 281(3):1065-70. PubMed ID: 9190837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effect of angiotensin-(1-7) on bradykinin arteriolar dilation in vivo.
    Oliveira MA; Fortes ZB; Santos RA; Kosla MC; De Carvalho MH
    Peptides; 1999; 20(10):1195-201. PubMed ID: 10573291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin II type 1 receptor blockade restores angiotensin-(1-7)-induced coronary vasodilation in hypertrophic rat hearts.
    Souza ÁP; Sobrinho DB; Almeida JF; Alves GM; Macedo LM; Porto JE; Vêncio EF; Colugnati DB; Santos RA; Ferreira AJ; Mendes EP; Castro CH
    Clin Sci (Lond); 2013 Nov; 125(9):449-59. PubMed ID: 23718715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries.
    Batenburg WW; Garrelds IM; Bernasconi CC; Juillerat-Jeanneret L; van Kats JP; Saxena PR; Danser AH
    Circulation; 2004 May; 109(19):2296-301. PubMed ID: 15117835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial AT1-mediated release of nitric oxide decreases angiotensin II contractions in rat carotid artery.
    Boulanger CM; Caputo L; Lévy BI
    Hypertension; 1995 Nov; 26(5):752-7. PubMed ID: 7591014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coronary vasodilation induced by angiotensin-converting enzyme inhibition in vivo: differential contribution of nitric oxide and bradykinin in conductance and resistance arteries.
    Sudhir K; Chou TM; Hutchison SJ; Chatterjee K
    Circulation; 1996 May; 93(9):1734-9. PubMed ID: 8653880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation of isolated coronary arteries by angiotensin-converting enzyme inhibitors: role of endothelium-derived kinins.
    Hecker M; Bara AT; Busse R
    J Vasc Res; 1993; 30(5):257-62. PubMed ID: 8399986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a new angiotensin-(1-7) receptor subtype in the aorta of Sprague-Dawley rats.
    Silva DM; Vianna HR; Cortes SF; Campagnole-Santos MJ; Santos RA; Lemos VS
    Peptides; 2007 Mar; 28(3):702-7. PubMed ID: 17129638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.