These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8613735)

  • 1. Role of ventrolateral medulla catecholamine cells in hypothalamic neuroendocrine cell responses to systemic hypoxia.
    Smith DW; Buller KM; Day TA
    J Neurosci; 1995 Dec; 15(12):7979-88. PubMed ID: 8613735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential recruitment of hypothalamic neuroendocrine and ventrolateral medulla catecholamine cells by non-hypotensive and hypotensive hemorrhages.
    Buller KM; Smith DW; Day TA
    Brain Res; 1999 Jul; 834(1-2):42-54. PubMed ID: 10407092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of medullary catecholamine cells in neuroendocrine responses to systemic cholecystokinin.
    Buller KM; Day TA
    J Neuroendocrinol; 1996 Nov; 8(11):819-24. PubMed ID: 8933358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indomethacin attenuates oxytocin and hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1 beta.
    Buller KM; Xu Y; Day TA
    J Neuroendocrinol; 1998 Jul; 10(7):519-28. PubMed ID: 9700679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. c-fos expression in hypothalamic neurosecretory and brainstem catecholamine cells following noxious somatic stimuli.
    Smith DW; Day TA
    Neuroscience; 1994 Feb; 58(4):765-75. PubMed ID: 8190253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dorsal and ventral medullary catecholamine cell groups contribute differentially to systemic interleukin-1beta-induced hypothalamic pituitary adrenal axis responses.
    Buller K; Xu Y; Dayas C; Day T
    Neuroendocrinology; 2001 Feb; 73(2):129-38. PubMed ID: 11244300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Descending pathways from the paraventricular nucleus contribute to the recruitment of brainstem nuclei following a systemic immune challenge.
    Buller KM; Dayas CV; Day TA
    Neuroscience; 2003; 118(1):189-203. PubMed ID: 12676149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypothalamic paraventricular nucleus neurons regulate medullary catecholamine cell responses to restraint stress.
    Dayas CV; Buller KM; Day TA
    J Comp Neurol; 2004 Oct; 478(1):22-34. PubMed ID: 15334647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia-induced Fos expression in neurons projecting to the pressor region in the rostral ventrolateral medulla.
    Hirooka Y; Polson JW; Potts PD; Dampney RA
    Neuroscience; 1997 Oct; 80(4):1209-24. PubMed ID: 9284071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermittent severe hypoxia induces plasticity within serotonergic and catecholaminergic neurons in the neonatal rat ventrolateral medulla.
    Givan SA; Cummings KJ
    J Appl Physiol (1985); 2016 Jun; 120(11):1277-87. PubMed ID: 26968026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of catecholamine-depleting medullary knife cuts on corticotropin-releasing factor and vasopressin immunoreactivity in the hypothalamus of normal and steroid-manipulated rats.
    Sawchenko PE
    Neuroendocrinology; 1988 Nov; 48(5):459-70. PubMed ID: 2469027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo and in vitro responses of neurons in the ventrolateral medulla to hypoxia.
    Nolan PC; Waldrop TG
    Brain Res; 1993 Dec; 630(1-2):101-14. PubMed ID: 8118678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medullary neurones regulate hypothalamic corticotropin-releasing factor cell responses to an emotional stressor.
    Dayas CV; Buller KM; Day TA
    Neuroscience; 2001; 105(3):707-19. PubMed ID: 11516835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in respiratory changes and Fos expression in the ventrolateral medulla of rats exposed to hypoxia, hypercapnia, and hypercapnic hypoxia.
    Wakai J; Takamura D; Morinaga R; Nakamuta N; Yamamoto Y
    Respir Physiol Neurobiol; 2015 Aug; 215():64-72. PubMed ID: 26001678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innervation of the amygdaloid complex by catecholaminergic cell groups of the ventrolateral medulla.
    Roder S; Ciriello J
    J Comp Neurol; 1993 Jun; 332(1):105-22. PubMed ID: 7685779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala.
    Dayas CV; Buller KM; Day TA
    Eur J Neurosci; 1999 Jul; 11(7):2312-22. PubMed ID: 10383620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noxious somatic stimuli excite neurosecretory vasopressin cells via A1 cell group.
    Day TA; Sibbald JR
    Am J Physiol; 1990 Jun; 258(6 Pt 2):R1516-20. PubMed ID: 2360697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of peripheral and central endogenous opioid modulation of systemic interleukin-1beta responses using c-fos expression in the rat brain.
    Buller KM; Hamlin AS; Osborne PB
    Neuropharmacology; 2005 Aug; 49(2):230-42. PubMed ID: 15993445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dorsomedial medulla stimulation activates rat supraoptic oxytocin and vasopressin neurones through different pathways.
    Raby WN; Renaud LP
    J Physiol; 1989 Oct; 417():279-94. PubMed ID: 2621594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation.
    Zhang J; Rivest S
    Eur J Neurosci; 1999 Aug; 11(8):2651-68. PubMed ID: 10457163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.