These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 8613804)
1. NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. Verma A; Moghaddam B J Neurosci; 1996 Jan; 16(1):373-9. PubMed ID: 8613804 [TBL] [Abstract][Full Text] [Related]
2. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. Moghaddam B; Adams B; Verma A; Daly D J Neurosci; 1997 Apr; 17(8):2921-7. PubMed ID: 9092613 [TBL] [Abstract][Full Text] [Related]
3. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Zahrt J; Taylor JR; Mathew RG; Arnsten AF J Neurosci; 1997 Nov; 17(21):8528-35. PubMed ID: 9334425 [TBL] [Abstract][Full Text] [Related]
4. Positive allosteric modulation of metabotropic glutamate 5 (mGlu5) receptors reverses N-Methyl-D-aspartate antagonist-induced alteration of neuronal firing in prefrontal cortex. Lecourtier L; Homayoun H; Tamagnan G; Moghaddam B Biol Psychiatry; 2007 Oct; 62(7):739-46. PubMed ID: 17511968 [TBL] [Abstract][Full Text] [Related]
5. Effects of Low Doses of Ketamine on Pyramidal Neurons in Rat Prefrontal Cortex. Shen G; Han F; Shi WX Neuroscience; 2018 Aug; 384():178-187. PubMed ID: 29859979 [TBL] [Abstract][Full Text] [Related]
6. Involvement of glutamate neurotransmission and N-methyl-d-aspartate receptor in the activation of midbrain dopamine neurons by 5-HT1A receptor agonists: an electrophysiological study in the rat. Gronier B Neuroscience; 2008 Oct; 156(4):995-1004. PubMed ID: 18801415 [TBL] [Abstract][Full Text] [Related]
7. Chronic NMDA antagonism impairs working memory, decreases extracellular dopamine, and increases D1 receptor binding in prefrontal cortex of conscious monkeys. Tsukada H; Nishiyama S; Fukumoto D; Sato K; Kakiuchi T; Domino EF Neuropsychopharmacology; 2005 Oct; 30(10):1861-9. PubMed ID: 15841110 [TBL] [Abstract][Full Text] [Related]
8. D1 dopamine and NMDA receptors interactions in the medial prefrontal cortex: modulation of spatial working memory in rats. Rios Valentim SJ; Gontijo AV; Peres MD; Rodrigues LC; Nakamura-Palacios EM Behav Brain Res; 2009 Dec; 204(1):124-8. PubMed ID: 19482047 [TBL] [Abstract][Full Text] [Related]
9. Dopamine-N-methyl-D-aspartate interactions in the modulation of locomotor activity and memory consolidation in mice. Mele A; Castellano C; Felici A; Cabib S; Caccia S; Oliverio A Eur J Pharmacol; 1996 Jul; 308(1):1-12. PubMed ID: 8836626 [TBL] [Abstract][Full Text] [Related]
10. Role of NR2B-containing N-methyl-D-aspartate receptors in haloperidol-induced c-Fos expression in the striatum and nucleus accumbens. Lee J; Rajakumar N Neuroscience; 2003; 122(3):739-45. PubMed ID: 14622917 [TBL] [Abstract][Full Text] [Related]
11. Role of medial prefrontal NMDA receptors in spatial delayed alternation in 19-, 26-, and 33-day-old rats. Jablonski SA; Watson DJ; Stanton ME Dev Psychobiol; 2010 Sep; 52(6):583-91. PubMed ID: 20806331 [TBL] [Abstract][Full Text] [Related]
12. Functional Interaction Between NMDA and mGlu5 Receptors: Effects on Working Memory, Instrumental Learning, Motor Behaviors, and Dopamine Release. Homayoun H; Stefani MR; Adams BW; Tamagan GD; Moghaddam B Neuropsychopharmacology; 2004 Jul; 29(7):1259-69. PubMed ID: 15010696 [TBL] [Abstract][Full Text] [Related]
13. Neonatal Prefrontal Inactivation Results in Reversed Dopaminergic Responses in the Shell Subregion of the Nucleus Accumbens to NMDA Antagonists. Pouvreau T; Tagliabue E; Usun Y; Eybrard S; Meyer F; Louilot A ACS Chem Neurosci; 2016 Jul; 7(7):964-71. PubMed ID: 27145294 [TBL] [Abstract][Full Text] [Related]
14. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Murphy BL; Arnsten AF; Goldman-Rakic PS; Roth RH Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1325-9. PubMed ID: 8577763 [TBL] [Abstract][Full Text] [Related]
15. Comparison of brain metabolic activity patterns induced by ketamine, MK-801 and amphetamine in rats: support for NMDA receptor involvement in responses to subanesthetic dose of ketamine. Duncan GE; Miyamoto S; Leipzig JN; Lieberman JA Brain Res; 1999 Oct; 843(1-2):171-83. PubMed ID: 10528123 [TBL] [Abstract][Full Text] [Related]
16. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Kegeles LS; Abi-Dargham A; Zea-Ponce Y; Rodenhiser-Hill J; Mann JJ; Van Heertum RL; Cooper TB; Carlsson A; Laruelle M Biol Psychiatry; 2000 Oct; 48(7):627-40. PubMed ID: 11032974 [TBL] [Abstract][Full Text] [Related]
17. Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats. Romanides AJ; Duffy P; Kalivas PW Neuroscience; 1999; 92(1):97-106. PubMed ID: 10392833 [TBL] [Abstract][Full Text] [Related]
18. Opposite effects of NMDA and AMPA receptor blockade on catalepsy induced by dopamine receptor antagonists. Papa SM; Engber TM; Boldry RC; Chase TN Eur J Pharmacol; 1993 Mar; 232(2-3):247-53. PubMed ID: 8385618 [TBL] [Abstract][Full Text] [Related]