These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8613805)

  • 1. Neuronal circuitry for comparison of timing in the electrosensory lateral line lobe of the African wave-type electric fish Gymnarchus niloticus.
    Kawasaki M; Guo YX
    J Neurosci; 1996 Jan; 16(1):380-91. PubMed ID: 8613805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of accurate temporal information in the electrosensory system of the African electric fish, Gymnarchus niloticus.
    Guo YX; Kawasaki M
    J Neurosci; 1997 Mar; 17(5):1761-8. PubMed ID: 9030634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the jamming avoidance response in African and South American wave-type electric fishes.
    Kawasaki M
    Biol Bull; 1996 Aug; 191(1):103-8. PubMed ID: 8776846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel projection of amplitude and phase information from the hindbrain to the midbrain of the African electric fish Gymnarchus niloticus.
    Kawasaki M; Guo YX
    J Neurosci; 1998 Sep; 18(18):7599-611. PubMed ID: 9736677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal sensitivity to microsecond time disparities in the electrosensory system of Gymnarchus niloticus.
    Matsushita A; Kawasaki M
    J Neurosci; 2005 Dec; 25(49):11424-32. PubMed ID: 16339036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The African wave-type electric fish, Gymnarchus niloticus, lacks corollary discharge mechanisms for electrosensory gating.
    Kawasaki M
    J Comp Physiol A; 1994 Feb; 174(2):133-44. PubMed ID: 8145186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus.
    Kawasaki M
    J Comp Physiol A; 1993 Jul; 173(1):9-22. PubMed ID: 8366474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish.
    Heiligenberg W
    Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unitary giant synapses embracing a single neuron at the convergent site of time-coding pathways of an electric fish, Gymnarchus niloticus.
    Matsushita A; Kawasaki M
    J Comp Neurol; 2004 Apr; 472(2):140-55. PubMed ID: 15048683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia.
    Heiligenberg W; Rose G
    J Neurosci; 1985 Feb; 5(2):515-31. PubMed ID: 3973680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the jamming avoidance response and its morphological correlates in the gymnotiform electric fish, Eigenmannia.
    Hagedorn M; Vischer HA; Heiligenberg W
    J Neurobiol; 1992 Dec; 23(10):1446-66. PubMed ID: 1487744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo.
    Castelló ME; Caputi A; Trujillo-Cenóz O
    J Comp Neurol; 1998 Nov; 401(4):549-63. PubMed ID: 9826277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish.
    Maler L; Mugnaini E
    J Comp Neurol; 1994 Jul; 345(2):224-52. PubMed ID: 7523460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 'Recognition units' at the top of a neuronal hierarchy? Prepacemaker neurons in Eigenmannia code the sign of frequency differences unambiguously.
    Rose GJ; Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1988 Apr; 162(6):759-72. PubMed ID: 3397919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limits of phase and amplitude sensitivity in the torus semicircularis of Eigenmannia.
    Rose G; Heiligenberg W
    J Comp Physiol A; 1986 Dec; 159(6):813-22. PubMed ID: 3806438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):303-18. PubMed ID: 2313347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural substrates for species recognition in the time-coding electrosensory pathway of mormyrid electric fish.
    Friedman MA; Hopkins CD
    J Neurosci; 1998 Feb; 18(3):1171-85. PubMed ID: 9437037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of time disparity detection by the Hodgkin-Huxley equations.
    Takagi H; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Apr; 189(4):257-62. PubMed ID: 12743730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phantoms in the brain: ambiguous representations of stimulus amplitude and timing in weakly electric fish.
    Carlson BA
    J Physiol Paris; 2008; 102(4-6):209-22. PubMed ID: 18984041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.