BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8613857)

  • 1. Brain tissue pressure gradients created by expanding frontal epidural mass lesion.
    Wolfla CE; Luerssen TG; Bowman RM; Putty TK
    J Neurosurg; 1996 Apr; 84(4):642-7. PubMed ID: 8613857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional brain tissue pressure gradients created by expanding extradural temporal mass lesion.
    Wolfla CE; Luerssen TG; Bowman RM
    J Neurosurg; 1997 Mar; 86(3):505-10. PubMed ID: 9046308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain tissue pressure gradients are dependent upon a normal spinal subarachnoid space.
    Wolfla CE; Luerssen TG
    Acta Neurochir Suppl; 1998; 71():310-2. PubMed ID: 9779216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of an acute focal epidural mass model to characterize the intracranial pressure-volume relationship in healthy Beagles.
    Packer RA; Simmons JP; Davis NM; Constable PD
    Am J Vet Res; 2011 Jan; 72(1):103-8. PubMed ID: 21194342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reproducible model of an epidural mass lesion in rodents. Part II: Characterization by in vivo magnetic resonance imaging.
    Bendszus M; Burger R; Vince GH; Solymosi L
    J Neurosurg; 2002 Dec; 97(6):1419-23. PubMed ID: 12507142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion of cerebral temperature, cerebral perfusion and intracranial pressure in rabbits placed with epidural balloons.
    Cağavi F; Kalayci M; Ozer Y; Oz OO; Açikgöz B
    Brain Res Bull; 2005 Jan; 64(6):481-5. PubMed ID: 15639543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for long-term monitoring of intracranial pressure in rats.
    Uldall M; Juhler M; Skjolding AD; Kruuse C; Jansen-Olesen I; Jensen R
    J Neurosci Methods; 2014 Apr; 227():1-9. PubMed ID: 24521617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral ICP monitoring: its importance in detecting the severity of secondary insults.
    Chambers IR; Kane PJ; Signorini DF; Jenkins A; Mendelow AD
    Acta Neurochir Suppl; 1998; 71():42-3. PubMed ID: 9779139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within the brain parenchyma and the epidural space.
    Eide PK
    Med Eng Phys; 2008 Jan; 30(1):34-40. PubMed ID: 17336574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is intracranial pressure monitoring in the epidural space reliable? Fact and fiction.
    Poca MA; Sahuquillo J; Topczewski T; Peñarrubia MJ; Muns A
    J Neurosurg; 2007 Apr; 106(4):548-56. PubMed ID: 17432703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional intraparenchymal pressure differences in experimental intracerebral hemorrhage: effect of hypertonic saline.
    Qureshi AI; Suri MF; Ringer AJ; Guterman LR; Hopkins LN
    Crit Care Med; 2002 Feb; 30(2):435-41. PubMed ID: 11889326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure gradients in the brain in an experimental model of hydrocephalus.
    Penn RD; Lee MC; Linninger AA; Miesel K; Lu SN; Stylos L
    J Neurosurg; 2005 Jun; 102(6):1069-75. PubMed ID: 16028766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is it useful to measure supratentorial ICP in the presence of a posterior fossa lesion? Absence of transtentorial pressure gradients in an animal model.
    Rieger A; Rainov NG; Sanchin L; Ebel H; Furka I; Görömbey Z; Burkert W
    Br J Neurosurg; 1999 Oct; 13(5):454-8. PubMed ID: 10627774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new reproducible model of an epidural mass lesion in rodents. Part I: Characterization by neurophysiological monitoring, magnetic resonance imaging, and histopathological analysis.
    Burger R; Bendszus M; Vince GH; Roosen K; Marmarou A
    J Neurosurg; 2002 Dec; 97(6):1410-8. PubMed ID: 12507141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a fiberoptic intracranial pressure monitor.
    Crutchfield JS; Narayan RK; Robertson CS; Michael LH
    J Neurosurg; 1990 Mar; 72(3):482-7. PubMed ID: 2303881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in parenchymal and ventricular pressure with experimental epidural compression.
    Abe T; Black PM; Foley L
    Surg Neurol; 1984 Nov; 22(5):477-80. PubMed ID: 6495156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outer skull landmark-based coordinates for measurement of cerebral blood flow and intracranial pressure in rabbits.
    Marbacher S; Milavec H; Neuschmelting V; Andereggen L; Erhardt S; Fandino J
    J Neurosci Methods; 2011 Oct; 201(2):322-6. PubMed ID: 21864572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between continuous brain tissue measurement and cerebrovenous measurement of pO2, pCO2 and pH in a porcine intracranial pressure model.
    Menzel M; Roth S; Rieger A; Soukup J; Furka I; Mikó I; Hennig C; Peuse C; Molnár P; Radke J
    Acta Chir Hung; 1997; 36(1-4):226-9. PubMed ID: 9408355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of local directional pressures in the brain with mass.
    Kuchiwaki H; Misu N; Takada S; Ishiguri H; Inao S; Sugita K
    Neurosurgery; 1992 Oct; 31(4):731-8; 738. PubMed ID: 1407460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidural cooling for selective brain hypothermia in porcine model.
    Cheng H; Shi J; Zhang L; Zhang Q; Yin H; Wang L
    Acta Neurochir (Wien); 2006 May; 148(5):559-64; discussion 564. PubMed ID: 16489504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.