These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 8613993)

  • 21. Characterization of an EcoR124I restriction-modification enzyme produced from a deleted form of the DNA-binding subunit, which results in a novel DNA specificity.
    Abadjieva A; Scarlett G; Janscák P; Dutta CF; Firman K
    Folia Microbiol (Praha); 2003; 48(3):319-28. PubMed ID: 12879741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA.
    Gowher H; Jeltsch A
    J Mol Biol; 2000 Oct; 303(1):93-110. PubMed ID: 11021972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence.
    Reddy YV; Rao DN
    J Mol Biol; 2000 May; 298(4):597-610. PubMed ID: 10788323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of conserved basic residues associated with DNA binding (Arg69) and catalysis (Lys76) by the RusA holliday junction resolvase.
    Bolt EL; Sharples GJ; Lloyd RG
    J Mol Biol; 2000 Nov; 304(2):165-76. PubMed ID: 11080453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical modification of lysine by reductive methylation. A probe for residues involved in DNA binding.
    Taylor IA; Webb M
    Methods Mol Biol; 2001; 148():301-14. PubMed ID: 11357593
    [No Abstract]   [Full Text] [Related]  

  • 26. Identification of residues within the herpes simplex virus type 1 origin-binding protein that contribute to sequence-specific DNA binding.
    Stow ND; Brown G; Cross AM; Abbotts AP
    Virology; 1998 Jan; 240(2):183-92. PubMed ID: 9454691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA recognition by transcriptional antiterminators of the BglG/SacY family: mapping of SacY RNA binding site.
    Declerck N; Minh NL; Yang Y; Bloch V; Kochoyan M; Aymerich S
    J Mol Biol; 2002 Jun; 319(5):1035-48. PubMed ID: 12079345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain.
    Hudson BP; Martinez-Yamout MA; Dyson HJ; Wright PE
    J Mol Biol; 2000 Dec; 304(3):355-70. PubMed ID: 11090279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA-binding induces a major structural transition in a type I methyltransferase.
    Taylor IA; Davis KG; Watts D; Kneale GG
    EMBO J; 1994 Dec; 13(23):5772-8. PubMed ID: 7988573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. M.TaqI: possible catalysis via cation-pi interactions in N-specific DNA methyltransferases.
    Schluckebier G; Labahn J; Granzin J; Saenger W
    Biol Chem; 1998; 379(4-5):389-400. PubMed ID: 9628329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein fragment complementation in M.HhaI DNA methyltransferase.
    Choe W; Chandrasegaran S; Ostermeier M
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1233-40. PubMed ID: 16040000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA interaction of the CcrM DNA methyltransferase: a mutational and modeling study.
    Albu RF; Zacharias M; Jurkowski TP; Jeltsch A
    Chembiochem; 2012 Jun; 13(9):1304-11. PubMed ID: 22639453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An archaeal SET domain protein exhibits distinct lysine methyltransferase activity towards DNA-associated protein MC1-alpha.
    Manzur KL; Zhou MM
    FEBS Lett; 2005 Jul; 579(17):3859-65. PubMed ID: 15978576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase III by NMR spectroscopy.
    DeRose EF; Darden T; Harvey S; Gabel S; Perrino FW; Schaaper RM; London RE
    Biochemistry; 2003 Apr; 42(13):3635-44. PubMed ID: 12667053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural evidence for an anion-directing track in the hen ovotransferrin N-lobe: implications for transferrin synergistic anion binding.
    Nadeau OW; Falick AM; Woodworth RC
    Biochemistry; 1996 Nov; 35(45):14294-303. PubMed ID: 8916915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A symmetrical model for the domain structure of type I DNA methyltransferases.
    Kneale GG
    J Mol Biol; 1994 Oct; 243(1):1-5. PubMed ID: 7932730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recognition of DNA interstrand cross-link of antitumor cisplatin by HMGB1 protein.
    Kasparkova J; Delalande O; Stros M; Elizondo-Riojas MA; Vojtiskova M; Kozelka J; Brabec V
    Biochemistry; 2003 Feb; 42(5):1234-44. PubMed ID: 12564926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identity of the amino acid residues involved in C3bi binding to the I-domain supports a mosaic model to explain the broad ligand repertoire of integrin alpha M beta 2.
    Ustinov VA; Plow EF
    Biochemistry; 2005 Mar; 44(11):4357-64. PubMed ID: 15766265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural characterization of Set1 RNA recognition motifs and their role in histone H3 lysine 4 methylation.
    Trésaugues L; Dehé PM; Guérois R; Rodriguez-Gil A; Varlet I; Salah P; Pamblanco M; Luciano P; Quevillon-Cheruel S; Sollier J; Leulliot N; Couprie J; Tordera V; Zinn-Justin S; Chàvez S; van Tilbeurgh H; Géli V
    J Mol Biol; 2006 Jun; 359(5):1170-81. PubMed ID: 16787775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The type I restriction endonuclease EcoR124I, couples ATP hydrolysis to bidirectional DNA translocation.
    Bianco PR; Hurley EM
    J Mol Biol; 2005 Sep; 352(4):837-59. PubMed ID: 16126220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.