BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8614316)

  • 41. Effect of beta-adrenoceptor blockade on post-exercise oxygen consumption.
    Børsheim E; Bahr R; Hansson P; Gullestad L; Hallén J; Sejersted OM
    Metabolism; 1994 May; 43(5):565-71. PubMed ID: 7909912
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence for β-adrenergic modulation of sweating during incremental exercise in habitually trained males.
    Amano T; Shitara Y; Fujii N; Inoue Y; Kondo N
    J Appl Physiol (1985); 2017 Jul; 123(1):182-189. PubMed ID: 28473612
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of beta-adrenoceptor blockade on exercise-induced plasma catecholamine concentration-heart rate response relationship.
    Ohnishi A; Minegishi A; Ishizaki T
    J Cardiovasc Pharmacol; 1987 Dec; 10(6):667-74. PubMed ID: 2450237
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sympathetic nervous system response to graded exercise: effect of beta-blockade.
    Barontini MB; Feldstein CA; Armando MI; Marchezotti A; Levin GM; Vilches A; Olivieri A; Burucua JE
    Hypertension; 1981; 3(6 Pt 2):II-155-9. PubMed ID: 6117516
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Maximal accumulated oxygen deficit expressed relative to the active muscle mass for cycling in untrained male and female subjects.
    Weber CL; Schneider DA
    Eur J Appl Physiol; 2000 Jul; 82(4):255-61. PubMed ID: 10958366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of beta-adrenergic blockade on response to exercise in sedentary and active subjects.
    Brusasco V; Violante B; Buccheri G
    J Appl Physiol (1985); 1989 Jul; 67(1):103-9. PubMed ID: 2503490
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of sustained adrenergic receptors stimulation and blockade on lactate threshold in rats.
    Zarzeczny R; Langfort J; Pilis W; Nazar K; Kaciuba-Uścilko H; Porta S
    J Sports Med Phys Fitness; 2001 Sep; 41(3):324-9. PubMed ID: 11533562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of beta-adrenergic blockade on the ventilatory responses to hypoxic and hyperoxic exercise in man.
    Conway MA; Petersen ES
    J Physiol; 1987 Dec; 393():43-55. PubMed ID: 3446803
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of physical training on exercise-induced hyperkalemia in chronic heart failure. Relation with ventilation and catecholamines.
    Barlow CW; Qayyum MS; Davey PP; Conway J; Paterson DJ; Robbins PA
    Circulation; 1994 Mar; 89(3):1144-52. PubMed ID: 8124801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduced norepinephrine response to dynamic exercise in human subjects during O2 breathing.
    Hesse B; Kanstrup IL; Christensen NJ; Ingemann-Hansen T; Hansen JF; Halkjaer-Kristensen J; Petersen FB
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Jul; 51(1):176-8. PubMed ID: 7263413
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of beta-adrenergic blockade on plasma lactate concentration during exercise at high altitude.
    Young AJ; Young PM; McCullough RE; Moore LG; Cymerman A; Reeves JT
    Eur J Appl Physiol Occup Physiol; 1991; 63(5):315-22. PubMed ID: 1685447
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catecholamine responses to alpha-adrenergic blockade during exercise in women acutely exposed to altitude.
    Mazzeo RS; Carroll JD; Butterfield GE; Braun B; Rock PB; Wolfel EE; Zamudio S; Moore LG
    J Appl Physiol (1985); 2001 Jan; 90(1):121-6. PubMed ID: 11133901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of catecholamines and beta-receptors in ventilatory response during hypoxic exercise.
    Warner MM; Mitchell GS
    Respir Physiol; 1991 Jul; 85(1):41-53. PubMed ID: 1658899
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasma catecholamine and lactate response during graded exercise with varied glycogen conditions.
    Podolin DA; Munger PA; Mazzeo RS
    J Appl Physiol (1985); 1991 Oct; 71(4):1427-33. PubMed ID: 1757366
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of adrenergic agonists and antagonists on muscle O2 uptake and lactate metabolism.
    Stainsby WN; Sumners C; Eitzman PD
    J Appl Physiol (1985); 1987 May; 62(5):1845-51. PubMed ID: 2885302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of beta adrenergic blockade on plasma catecholamines in exercise.
    Irving MH; Britton BJ; Wood WG; Padgham C; Carruthers M
    Nature; 1974 Apr; 248(448):531-3. PubMed ID: 4150965
    [No Abstract]   [Full Text] [Related]  

  • 57. [The effect of beta adrenergic receptor blockade on the acidosis of exertion].
    Juchmès J; Cession-Fossion A; Rodigas P; Scheen A
    Arch Int Physiol Biochim; 1973 Feb; 81(1):158-60. PubMed ID: 4122902
    [No Abstract]   [Full Text] [Related]  

  • 58. Effect of beta-adrenergic blockade during exercise on ventilation and gas exchange.
    Brown HV; Wasserman K; Whipp BJ
    J Appl Physiol; 1976 Dec; 41(6):886-92. PubMed ID: 1002642
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Beta-adrenergic blockade decreases norepinephrine release in humans.
    Rosen SG; Supiano MA; Perry TJ; Linares OA; Hogikyan RV; Smith MJ; Halter JB
    Am J Physiol; 1990 Jun; 258(6 Pt 1):E999-1005. PubMed ID: 2163203
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of cardioselective beta-blockade on plasma catecholamines and performance during different forms of exercise.
    Fikenzer S; Fikenzer K; Laufs U; Falz R; Schulze A; Busse M
    J Sports Med Phys Fitness; 2020 Apr; 60(4):643-649. PubMed ID: 31818057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.