These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 8614471)
21. Balance between alpha and beta structures in ab initio protein folding. Best RB; Mittal J J Phys Chem B; 2010 Jul; 114(26):8790-8. PubMed ID: 20536262 [TBL] [Abstract][Full Text] [Related]
22. Mutational analysis of the folding transition state of the C-terminal domain of ribosomal protein L9: a protein with an unusual beta-sheet topology. Li Y; Gupta R; Cho JH; Raleigh DP Biochemistry; 2007 Jan; 46(4):1013-21. PubMed ID: 17240985 [TBL] [Abstract][Full Text] [Related]
23. Context is a major determinant of beta-sheet propensity. Minor DL; Kim PS Nature; 1994 Sep; 371(6494):264-7. PubMed ID: 8078589 [TBL] [Abstract][Full Text] [Related]
24. Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain. Villegas V; Martínez JC; Avilés FX; Serrano L J Mol Biol; 1998 Nov; 283(5):1027-36. PubMed ID: 9799641 [TBL] [Abstract][Full Text] [Related]
25. The role of turns in the structure of an alpha-helical protein. Brunet AP; Huang ES; Huffine ME; Loeb JE; Weltman RJ; Hecht MH Nature; 1993 Jul; 364(6435):355-8. PubMed ID: 8332196 [TBL] [Abstract][Full Text] [Related]
26. Molecular dynamics as a tool to detect protein foldability. A mutant of domain B1 of protein G with non-native secondary structure propensities. Cregut D; Serrano L Protein Sci; 1999 Feb; 8(2):271-82. PubMed ID: 10048320 [TBL] [Abstract][Full Text] [Related]
27. Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions. Zhou GP; Troy FA Glycobiology; 2003 Feb; 13(2):51-71. PubMed ID: 12626407 [TBL] [Abstract][Full Text] [Related]
28. Prediction and structural characterization of an independently folding substructure in the src SH3 domain. Yi Q; Bystroff C; Rajagopal P; Klevit RE; Baker D J Mol Biol; 1998; 283(1):293-300. PubMed ID: 9761691 [TBL] [Abstract][Full Text] [Related]
29. Computation of conformational entropy from protein sequences using the machine-learning method--application to the study of the relationship between structural conservation and local structural stability. Huang SW; Hwang JK Proteins; 2005 Jun; 59(4):802-9. PubMed ID: 15828008 [TBL] [Abstract][Full Text] [Related]
30. Interactions between a helical residue and tertiary structures: helix propensities in small peptides and in native proteins. Qian H; Chan SI J Mol Biol; 1996 Aug; 261(2):279-88. PubMed ID: 8757294 [TBL] [Abstract][Full Text] [Related]
31. Core mutations switch monomeric protein GB1 into an intertwined tetramer. Kirsten Frank M; Dyda F; Dobrodumov A; Gronenborn AM Nat Struct Biol; 2002 Nov; 9(11):877-85. PubMed ID: 12379842 [TBL] [Abstract][Full Text] [Related]
32. Transformation of an alpha-helix peptide into a beta-hairpin induced by addition of a fragment results in creation of a coexisting state. Araki M; Tamura A Proteins; 2007 Mar; 66(4):860-8. PubMed ID: 17177204 [TBL] [Abstract][Full Text] [Related]
33. Protein design with L- and D-alpha-amino acid structures as the alphabet. Durani S Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934 [TBL] [Abstract][Full Text] [Related]
34. Native and non-native structure in a protein-folding intermediate: spectroscopic studies of partially reduced IGF-I and an engineered alanine model. Hua QX; Narhi L; Jia W; Arakawa T; Rosenfeld R; Hawkins N; Miller JA; Weiss MA J Mol Biol; 1996 Jun; 259(2):297-313. PubMed ID: 8656430 [TBL] [Abstract][Full Text] [Related]
35. Structure of the Escherichia coli response regulator NarL. Baikalov I; Schröder I; Kaczor-Grzeskowiak M; Grzeskowiak K; Gunsalus RP; Dickerson RE Biochemistry; 1996 Aug; 35(34):11053-61. PubMed ID: 8780507 [TBL] [Abstract][Full Text] [Related]
36. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. de Pereda JM; Leynadier D; Evangelio JA; Chacón P; Andreu JM Biochemistry; 1996 Nov; 35(45):14203-15. PubMed ID: 8916905 [TBL] [Abstract][Full Text] [Related]
37. Influence of primary sequence transpositions on the folding pathways of ribonuclease T1. Johnson JL; Raushel FM Biochemistry; 1996 Aug; 35(31):10223-33. PubMed ID: 8756488 [TBL] [Abstract][Full Text] [Related]
38. One-state downhill versus conventional protein folding. Ferguson N; Schartau PJ; Sharpe TD; Sato S; Fersht AR J Mol Biol; 2004 Nov; 344(2):295-301. PubMed ID: 15522284 [TBL] [Abstract][Full Text] [Related]
39. Exploring the conformational properties of the sequence space between two proteins with different folds: an experimental study. Blanco FJ; Angrand I; Serrano L J Mol Biol; 1999 Jan; 285(2):741-53. PubMed ID: 9878441 [TBL] [Abstract][Full Text] [Related]
40. Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A-cyclin-dependent kinase 2 complex. Verkhivker GM Proteins; 2005 Feb; 58(3):706-16. PubMed ID: 15609350 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]