BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 8614624)

  • 1. Triplex formation at physiological pH by 5-Me-dC-N4-(spermine) [X] oligodeoxynucleotides: non protonation of N3 in X of X*G:C triad and effect of base mismatch/ionic strength on triplex stabilities.
    Barawkar DA; Rajeev KG; Kumar VA; Ganesh KN
    Nucleic Acids Res; 1996 Apr; 24(7):1229-37. PubMed ID: 8614624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplex formation at physiological pH by oligonucleotides incorporating 5-Me-dC-(N4-spermine).
    Barawkar DA; Kumar VA; Ganesh KN
    Biochem Biophys Res Commun; 1994 Dec; 205(3):1665-70. PubMed ID: 7811251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triplex formation at physiological pH: comparative studies on DNA triplexes containing 5-Me-dC tethered at N4 with spermine and tetraethyleneoxyamine.
    Rajeev KG; Jadhav VR; Ganesh KN
    Nucleic Acids Res; 1997 Nov; 25(21):4187-93. PubMed ID: 9336445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV spectroscopic identification and thermodynamic analysis of protonated third strand deoxycytidine residues at neutrality in the triplex d(C(+)-T)6:[d(A-G)6.d(C-T)6]; evidence for a proton switch.
    Lavelle L; Fresco JR
    Nucleic Acids Res; 1995 Jul; 23(14):2692-705. PubMed ID: 7651830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient triple helix formation by oligodeoxyribonucleotides containing alpha- or beta-2-amino-5-(2-deoxy-D-ribofuranosyl) pyridine residues.
    Bates PJ; Laughton CA; Jenkins TC; Capaldi DC; Roselt PD; Reese CB; Neidle S
    Nucleic Acids Res; 1996 Nov; 24(21):4176-84. PubMed ID: 8932369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTIR and UV spectroscopy studies of triplex formation between alpha-oligonucleotides with non-ionic phoshoramidate linkages and DNA targets.
    Michel T; Debart F; Vasseur JJ; Geinguenaud F; Taillandier E
    J Biomol Struct Dyn; 2003 Dec; 21(3):435-45. PubMed ID: 14616038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Paper-clip" type triple helix formation by 5'-d-(TC)3Ta(CT)3Cb(AG)3 (a and b = 0-4) as a function of loop size with and without the pseudoisocytosine base in the Hoogsteen strand.
    Chin TM; Lin SB; Lee SY; Chang ML; Cheng AY; Chang FC; Pasternack L; Huang DH; Kan LS
    Biochemistry; 2000 Oct; 39(40):12457-64. PubMed ID: 11015227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triplex formation by oligonucleotides containing novel deoxycytidine derivatives.
    Huang CY; Bi G; Miller PS
    Nucleic Acids Res; 1996 Jul; 24(13):2606-13. PubMed ID: 8692703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution conformation of a parallel DNA triple helix with 5' and 3' triplex-duplex junctions.
    Asensio JL; Brown T; Lane AN
    Structure; 1999 Jan; 7(1):1-11. PubMed ID: 10368268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU.
    Gowers DM; Bijapur J; Brown T; Fox KR
    Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA triple-helix formation at physiologic pH and temperature.
    Hanvey JC; Williams EM; Besterman JM
    Antisense Res Dev; 1991; 1(4):307-17. PubMed ID: 1821652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides.
    Musso M; Van Dyke MW
    Nucleic Acids Res; 1995 Jun; 23(12):2320-7. PubMed ID: 7610062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplex formation by oligodeoxyribonucleotides involving the formation of X.U.A triads.
    Miller PS; Cushman CD
    Biochemistry; 1993 Mar; 32(12):2999-3004. PubMed ID: 8457563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Cm/T, G/A, and G/T triplex stability by conjugate groups in the presence and absence of KCl.
    Gamper HB; Kutyavin IV; Rhinehart RL; Lokhov SG; Reed MW; Meyer RB
    Biochemistry; 1997 Dec; 36(48):14816-26. PubMed ID: 9398203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex.
    Gondeau C; Maurizot JC; Durand M
    Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimolecular DNA triplexes: duplex extensions show implications for H-form DNA stability.
    Mundt AA; Crouch GJ; Eaton BE
    Biochemistry; 1997 Oct; 36(42):13004-9. PubMed ID: 9335561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.