These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8614639)

  • 1. An RNA fragment consisting of the P7 and P9.0 stems and the 3'-terminal guanosine of the Tetrahymena group I intron.
    Watanabe S; Kawai G; Muto Y; Watanabe K; Inoue T; Yokoyama S
    Nucleic Acids Res; 1996 Apr; 24(7):1337-44. PubMed ID: 8614639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of an RNA fragment with the P7/P9.0 region and the 3'-terminal guanosine of the tetrahymena group I intron.
    Kitamura A; Muto Y; Watanabe S; Kim I; Ito T; Nishiya Y; Sakamoto K; Ohtsuki T; Kawai G; Watanabe K; Hosono K; Takaku H; Katoh E; Yamazaki T; Inoue T; Yokoyama S
    RNA; 2002 Apr; 8(4):440-51. PubMed ID: 11991639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The guanosine binding mechanism of the Tetrahymena group I intron.
    Kitamura A; Muto Y; Watanabe S; Kim I; Ito T; Nishiya Y; Ohtsuki T; Kawai G; Watanabe K; Hosono K; Takaku H; Katoh E; Yamazaki T; Inoue T; Yokoyama S
    Nucleic Acids Symp Ser; 1999; (42):191-2. PubMed ID: 10780444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of long-range loop-loop interactions on folding of the Tetrahymena self-splicing RNA.
    Pan J; Woodson SA
    J Mol Biol; 1999 Dec; 294(4):955-65. PubMed ID: 10588899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of P9 and stem-loop structures downstream from the catalytic core affects both 5' and 3' splicing activities in a group-I intron.
    Caprara MG; Waring RB
    Gene; 1994 May; 143(1):29-37. PubMed ID: 8200535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirements of a group I intron for reactions at the 3' splice site.
    van der Horst G; Inoue T
    J Mol Biol; 1993 Feb; 229(3):685-94. PubMed ID: 8433366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET; Cech TR
    Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core.
    Doherty EA; Doudna JA
    Biochemistry; 1997 Mar; 36(11):3159-69. PubMed ID: 9115992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional model of Tetrahymena group I intron.
    Amano M
    Nucleic Acids Symp Ser; 1997; (37):227-8. PubMed ID: 9586082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity from steric restrictions in the guanosine binding pocket of a group I ribozyme.
    Russell R; Herschlag D
    RNA; 1999 Feb; 5(2):158-66. PubMed ID: 10024168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR solution structure of the L 9.1a region of Tetrahymena group I intron.
    Amano M
    Nucleic Acids Symp Ser; 2000; (44):281-2. PubMed ID: 12903378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3' splice site-binding sequence in the catalytic core of a group I intron.
    Burke JM; Esherick JS; Burfeind WR; King JL
    Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trans-activation of the Tetrahymena group I intron ribozyme via a non-native RNA-RNA interaction.
    Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Res; 1999 Apr; 27(7):1650-5. PubMed ID: 10075996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis.
    Jabri E; Aigner S; Cech TR
    Biochemistry; 1997 Dec; 36(51):16345-54. PubMed ID: 9405070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Symp Ser; 2000; (44):197-8. PubMed ID: 12903336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA; Cech TR
    Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A base-triple structural domain in RNA.
    Chastain M; Tinoco I
    Biochemistry; 1992 Dec; 31(51):12733-41. PubMed ID: 1463745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circle reopening in the Tetrahymena ribozyme resembles site-specific hydrolysis at the 3' splice site.
    Sanders J; Towner P
    J Mol Biol; 1992 Jan; 223(1):351-60. PubMed ID: 1731080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.