BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 8615765)

  • 1. Top-down control analysis of temperature effect on oxidative phosphorylation.
    Dufour S; Rousse N; Canioni P; Diolez P
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):743-51. PubMed ID: 8615765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions.
    Harper ME; Brand MD
    Can J Physiol Pharmacol; 1994 Aug; 72(8):899-908. PubMed ID: 7834578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes.
    Brand MD; Harper ME; Taylor HC
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):739-48. PubMed ID: 8489502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Aug; 263(3):671-85. PubMed ID: 10469130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top-down control analysis of the effect of temperature on ectotherm oxidative phosphorylation.
    Chamberlin ME
    Am J Physiol Regul Integr Comp Physiol; 2004 Oct; 287(4):R794-800. PubMed ID: 15191905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: role of adenine nucleotide translocator.
    Quentin E; Avéret N; Guérin B; Rigoulet M
    Biochem Biophys Res Commun; 1994 Jul; 202(2):816-21. PubMed ID: 8048953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment.
    Roussel D; Dumas JF; Simard G; Malthièry Y; Ritz P
    Biochem J; 2004 Sep; 382(Pt 2):491-9. PubMed ID: 15175015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cadmium on the control and internal regulation of oxidative phosphorylation in potato tuber mitochondria.
    Kesseler A; Brand MD
    Eur J Biochem; 1994 Nov; 225(3):907-22. PubMed ID: 7957228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes.
    Harper ME; Monemdjou S; Ramsey JJ; Weindruch R
    Am J Physiol; 1998 Aug; 275(2):E197-206. PubMed ID: 9688619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical studies on the control of the oxidative phosphorylation system.
    Korzeniewski B; Froncisz W
    Biochim Biophys Acta; 1992 Aug; 1102(1):67-75. PubMed ID: 1324730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding.
    Marcinkeviciute A; Mildaziene V; Crumm S; Demin O; Hoek JB; Kholodenko B
    Biochem J; 2000 Jul; 349(Pt 2):519-26. PubMed ID: 10880351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis.
    Kesseler A; Brand MD
    Eur J Biochem; 1994 Nov; 225(3):897-906. PubMed ID: 7957227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier.
    Devin A; Guérin B; Rigoulet M
    Biochim Biophys Acta; 1996 Jan; 1273(1):13-20. PubMed ID: 8573591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory.
    Hafner RP; Brown GC; Brand MD
    Eur J Biochem; 1990 Mar; 188(2):313-9. PubMed ID: 2156698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative determination of the regulation of oxidative phosphorylation by cadmium in potato tuber mitochondria.
    Kesseler A; Brand MD
    Eur J Biochem; 1994 Nov; 225(3):923-35. PubMed ID: 7957229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of respiration and oxidative phosphorylation in isolated rat liver cells.
    Brown GC; Lakin-Thomas PL; Brand MD
    Eur J Biochem; 1990 Sep; 192(2):355-62. PubMed ID: 2209591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of the control of respiration in potato tuber mitochondria using the top-down approach of metabolic control analysis.
    Kesseler A; Diolez P; Brinkmann K; Brand MD
    Eur J Biochem; 1992 Dec; 210(3):775-84. PubMed ID: 1483462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Dec; 266(3):737-49. PubMed ID: 10583367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.