These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 8615765)
1. Top-down control analysis of temperature effect on oxidative phosphorylation. Dufour S; Rousse N; Canioni P; Diolez P Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):743-51. PubMed ID: 8615765 [TBL] [Abstract][Full Text] [Related]
2. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions. Harper ME; Brand MD Can J Physiol Pharmacol; 1994 Aug; 72(8):899-908. PubMed ID: 7834578 [TBL] [Abstract][Full Text] [Related]
3. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Brand MD; Harper ME; Taylor HC Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):739-48. PubMed ID: 8489502 [TBL] [Abstract][Full Text] [Related]
4. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Ainscow EK; Brand MD Eur J Biochem; 1999 Aug; 263(3):671-85. PubMed ID: 10469130 [TBL] [Abstract][Full Text] [Related]
5. Top-down control analysis of the effect of temperature on ectotherm oxidative phosphorylation. Chamberlin ME Am J Physiol Regul Integr Comp Physiol; 2004 Oct; 287(4):R794-800. PubMed ID: 15191905 [TBL] [Abstract][Full Text] [Related]
6. Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: role of adenine nucleotide translocator. Quentin E; Avéret N; Guérin B; Rigoulet M Biochem Biophys Res Commun; 1994 Jul; 202(2):816-21. PubMed ID: 8048953 [TBL] [Abstract][Full Text] [Related]
7. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces. Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311 [TBL] [Abstract][Full Text] [Related]
8. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment. Roussel D; Dumas JF; Simard G; Malthièry Y; Ritz P Biochem J; 2004 Sep; 382(Pt 2):491-9. PubMed ID: 15175015 [TBL] [Abstract][Full Text] [Related]
9. Effects of cadmium on the control and internal regulation of oxidative phosphorylation in potato tuber mitochondria. Kesseler A; Brand MD Eur J Biochem; 1994 Nov; 225(3):907-22. PubMed ID: 7957228 [TBL] [Abstract][Full Text] [Related]
10. Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes. Harper ME; Monemdjou S; Ramsey JJ; Weindruch R Am J Physiol; 1998 Aug; 275(2):E197-206. PubMed ID: 9688619 [TBL] [Abstract][Full Text] [Related]
11. Theoretical studies on the control of the oxidative phosphorylation system. Korzeniewski B; Froncisz W Biochim Biophys Acta; 1992 Aug; 1102(1):67-75. PubMed ID: 1324730 [TBL] [Abstract][Full Text] [Related]
12. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences. Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312 [TBL] [Abstract][Full Text] [Related]
13. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding. Marcinkeviciute A; Mildaziene V; Crumm S; Demin O; Hoek JB; Kholodenko B Biochem J; 2000 Jul; 349(Pt 2):519-26. PubMed ID: 10880351 [TBL] [Abstract][Full Text] [Related]
14. Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis. Kesseler A; Brand MD Eur J Biochem; 1994 Nov; 225(3):897-906. PubMed ID: 7957227 [TBL] [Abstract][Full Text] [Related]
15. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier. Devin A; Guérin B; Rigoulet M Biochim Biophys Acta; 1996 Jan; 1273(1):13-20. PubMed ID: 8573591 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Hafner RP; Brown GC; Brand MD Eur J Biochem; 1990 Mar; 188(2):313-9. PubMed ID: 2156698 [TBL] [Abstract][Full Text] [Related]
17. Quantitative determination of the regulation of oxidative phosphorylation by cadmium in potato tuber mitochondria. Kesseler A; Brand MD Eur J Biochem; 1994 Nov; 225(3):923-35. PubMed ID: 7957229 [TBL] [Abstract][Full Text] [Related]
18. Control of respiration and oxidative phosphorylation in isolated rat liver cells. Brown GC; Lakin-Thomas PL; Brand MD Eur J Biochem; 1990 Sep; 192(2):355-62. PubMed ID: 2209591 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of the control of respiration in potato tuber mitochondria using the top-down approach of metabolic control analysis. Kesseler A; Diolez P; Brinkmann K; Brand MD Eur J Biochem; 1992 Dec; 210(3):775-84. PubMed ID: 1483462 [TBL] [Abstract][Full Text] [Related]
20. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Ainscow EK; Brand MD Eur J Biochem; 1999 Dec; 266(3):737-49. PubMed ID: 10583367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]