These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 8615766)

  • 1. Paradoxical control properties of enzymes within pathways: can activation cause an enzyme to have increased control?
    Kholodenko BN; Brown GC
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):753-60. PubMed ID: 8615766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of paradoxical or sustained control by an enzyme when overexpressed: necessary conditions and experimental evidence with regard to hepatic glucokinase.
    De Atauri P; Acerenza L; Kholodenko BN; De La Iglesia N; Guinovart JJ; Agius L; Cascante M
    Biochem J; 2001 May; 355(Pt 3):787-93. PubMed ID: 11311143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A steady-state kinetic method for the verification of the rapid-equilibrium assumption in allosteric enzymes.
    Symcox MM; Reinhart GD
    Anal Biochem; 1992 Nov; 206(2):394-9. PubMed ID: 1443611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic properties required for sustained or paradoxical control of metabolic fluxes under large changes in enzyme activities.
    Ortega F; Cascante M; Acerenza L
    J Theor Biol; 2008 Jun; 252(3):569-73. PubMed ID: 18045618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of the relationships between rate and driving force in simple uncatalysed and enzyme-catalysed reactions with applications of the findings to chemiosmotic reactions.
    Stoner CD
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):541-52. PubMed ID: 1533514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of enzyme systems and their regulation: the inapplicability of irreversible thermodynamics.
    Wilson DF
    Biochim Biophys Acta; 1980 Dec; 616(2):371-80. PubMed ID: 7213644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exponential function for calculating saturable enzyme kinetics.
    Keller F; Emde C; Schwarz A
    Clin Chem; 1988 Dec; 34(12):2486-9. PubMed ID: 3197288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Substrate inhibition as a cause of oscillations in an open irreversible enzymic reaction S1 + S2 in the presence of E(R,T) leads to S1' + S2'. A mathematical model].
    Kaimachnikov NP; Sel'kov EE
    Biokhimiia; 1977 Apr; 42(4):639-46. PubMed ID: 870087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation in metabolic systems under homeostatic flux control.
    Fridlyand LE; Scheibe R
    Arch Biochem Biophys; 2000 Feb; 374(2):198-206. PubMed ID: 10666298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state kinetic behaviour of two- or n-enzyme systems made of free sequential enzymes involved in a metabolic pathway.
    Legent G; Thellier M; Norris V; Ripoll C
    C R Biol; 2006 Dec; 329(12):963-6. PubMed ID: 17126800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taking enzyme kinetics out of control; putting control into regulation.
    Hofmeyr JH; Cornish-Bowden A; Rohwer JM
    Eur J Biochem; 1993 Mar; 212(3):833-7. PubMed ID: 8462553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Description of the kinetics of the two substrate reactions S1+S2 goes to and comes from S3+S4 by a generalized Monod, Wyman, Changeux model].
    Popova SV; Sel'kov EE
    Mol Biol (Mosk); 1979; 13(1):129-39. PubMed ID: 156878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control analysis of systems having two steps catalyzed by the same protein molecule in unbranched chains.
    Cascante M; Canela EI; Franco R
    Eur J Biochem; 1990 Sep; 192(2):369-71. PubMed ID: 2209592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Specific ligand induced dimerization of allosteric enzymes].
    Kurganov BI
    Mol Biol (Mosk); 1982; 16(2):424-33. PubMed ID: 7073865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dramatic changes in control properties that accompany channelling and metabolite sequestration.
    Kholodenko BN; Cascante M; Westerhoff HV
    FEBS Lett; 1993 Dec; 336(3):381-4. PubMed ID: 8282097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-enzyme interactions and control analysis. 1. The case of non-additivity: monomer-oligomer associations.
    Kacser H; Sauro HM; Acerenza L
    Eur J Biochem; 1990 Feb; 187(3):481-91. PubMed ID: 2406132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rates of reactions catalysed by a dimeric enzyme. Effects of the reaction scheme and the kinetic parameters on co-operativity.
    Ishikawa H; Ogino H; Oshida H
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):131-7. PubMed ID: 1741741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.
    Wales ME; Madison LL; Glaser SS; Wild JR
    J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients.
    Delgado J; Liao JC
    Biochem J; 1992 Aug; 285 ( Pt 3)(Pt 3):965-72. PubMed ID: 1497632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric cofactor-mediated enzyme cooperativity: a theoretical treatment.
    Kuo LC
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5243-7. PubMed ID: 6577418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.