BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8615826)

  • 1. Efficient catalysis by beta-lactamase from Staphylococcus aureus PC1 accompanied by accumulation of an acyl-enzyme.
    Qi X; Virden R
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):537-41. PubMed ID: 8615826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism.
    Christensen H; Martin MT; Waley SG
    Biochem J; 1990 Mar; 266(3):853-61. PubMed ID: 2158301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-steady state beta-lactamase kinetics. The trapping of a covalent intermediate and the interpretation of pH rate profiles.
    Anderson EG; Pratt RF
    J Biol Chem; 1983 Nov; 258(21):13120-6. PubMed ID: 6605346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine-73 is involved in the acylation and deacylation of beta-lactamase.
    Lietz EJ; Truher H; Kahn D; Hokenson MJ; Fink AL
    Biochemistry; 2000 May; 39(17):4971-81. PubMed ID: 10819961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryoenzymology of staphylococcal beta-lactamase: trapping a serine-70-linked acyl-enzyme.
    Virden R; Tan AK; Fink AL
    Biochemistry; 1990 Jan; 29(1):145-53. PubMed ID: 2108714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of the stabilization by substrate of Staphylococcus aureus PC1 beta-lactamase.
    Lejeune A; Vanhove M; Lamotte-Brasseur J; Pain RH; Frère JM; Matagne A
    Chem Biol; 2001 Aug; 8(8):831-42. PubMed ID: 11514231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping the acyl-enzyme intermediate in beta-lactamase I catalysis.
    Cartwright SJ; Tan AK; Fink AL
    Biochem J; 1989 Nov; 263(3):905-12. PubMed ID: 2512916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of tazobactam with Staphylococcus aureus PC1 beta-lactamase: a molecular modelling and enzyme kinetics study.
    Denny BJ; Toomer CA; Lambert PA
    Microbios; 1994; 78(317):245-57. PubMed ID: 8078414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the non-proline cis peptide bond in beta-lactamase from Staphylococcus aureus PC1 by the replacement Asn136 --> Ala.
    Banerjee S; Shigematsu N; Pannell LK; Ruvinov S; Orban J; Schwarz F; Herzberg O
    Biochemistry; 1997 Sep; 36(36):10857-66. PubMed ID: 9283075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase.
    Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O
    Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis.
    Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD
    Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of acyl-enzyme intermediates during turnover of penicillins by the class A beta-lactamase of Staphylococcus aureus PC1.
    Pratt RF; McConnell TS; Murphy SJ
    Biochem J; 1988 Sep; 254(3):919-22. PubMed ID: 3264153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-steady state beta-lactamase kinetics. Observation of a covalent intermediate during turnover of a fluorescent cephalosporin by the beta-lactamase of STaphylococcus aureus PC1.
    Anderson EG; Pratt RF
    J Biol Chem; 1981 Nov; 256(22):11401-4. PubMed ID: 6975275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanism of the serine beta-lactamase catalyzed hydrolysis of depsipeptides.
    Govardhan CP; Pratt RF
    Biochemistry; 1987 Jun; 26(12):3385-95. PubMed ID: 3115289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of beta-lactamase leading to accumulation of a catalytic intermediate.
    Escobar WA; Tan AK; Fink AL
    Biochemistry; 1991 Nov; 30(44):10783-7. PubMed ID: 1681903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic analysis of TEM1 beta-lactamase: effect of substrate binding, steep potential gradients and consequences of site-directed mutations.
    Swarén P; Maveyraud L; Guillet V; Masson JM; Mourey L; Samama JP
    Structure; 1995 Jun; 3(6):603-13. PubMed ID: 8590021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible deactivation of beta-lactamase by quinacillin. Extent of the conformational change in the isolated transitory complex.
    Persaud KC; Pain RH; Virden R
    Biochem J; 1986 Aug; 237(3):723-30. PubMed ID: 3492197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.