BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8615826)

  • 21. pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step.
    Massova I; Kollman PA
    J Comput Chem; 2002 Dec; 23(16):1559-76. PubMed ID: 12395425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different transition-state structures for the reactions of beta-lactams and analogous beta-sultams with serine beta-lactamases.
    Tsang WY; Ahmed N; Hinchliffe PS; Wood JM; Harding LP; Laws AP; Page MI
    J Am Chem Soc; 2005 Dec; 127(49):17556-64. PubMed ID: 16332108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of a Staphylococcus aureus beta-lactamase-dicloxacillin complex and kinetic studies on the reactivation of the enzyme.
    Hardy LW; Kirsch JF
    Arch Biochem Biophys; 1989 Jan; 268(1):338-48. PubMed ID: 2783544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases.
    Mustafi D; Hofer JE; Huang W; Palzkill T; Makinen MW
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1279-89. PubMed ID: 15134725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1.
    Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O
    Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elimination of the hydrolytic water molecule in a class A beta-lactamase mutant: crystal structure and kinetics.
    Zawadzke LE; Chen CC; Banerjee S; Li Z; Wäsch S; Kapadia G; Moult J; Herzberg O
    Biochemistry; 1996 Dec; 35(51):16475-82. PubMed ID: 8987980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics and mechanism of the hydrolysis of depsipeptides catalyzed by the beta-lactamase of Enterobacter cloacae P99.
    Xu Y; Soto G; Hirsch KR; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3595-603. PubMed ID: 8639511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-directed mutagenesis of glutamate-166 in beta-lactamase leads to a branched path mechanism.
    Escobar WA; Tan AK; Lewis ER; Fink AL
    Biochemistry; 1994 Jun; 33(24):7619-26. PubMed ID: 7912106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical role of tryptophan 154 for the activity and stability of class D beta-lactamases.
    Baurin S; Vercheval L; Bouillenne F; Falzone C; Brans A; Jacquamet L; Ferrer JL; Sauvage E; Dehareng D; Frère JM; Charlier P; Galleni M; Kerff F
    Biochemistry; 2009 Dec; 48(47):11252-63. PubMed ID: 19860471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic characterization of hydrolysis of nitrocefin, cefoxitin, and meropenem by β-lactamase from Mycobacterium tuberculosis.
    Chow C; Xu H; Blanchard JS
    Biochemistry; 2013 Jun; 52(23):4097-104. PubMed ID: 23672214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases.
    Chen Y; Shoichet B; Bonnet R
    J Am Chem Soc; 2005 Apr; 127(15):5423-34. PubMed ID: 15826180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 A resolution.
    Strynadka NC; Adachi H; Jensen SE; Johns K; Sielecki A; Betzel C; Sutoh K; James MN
    Nature; 1992 Oct; 359(6397):700-5. PubMed ID: 1436034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The catalytic efficiency (kcat/Km) of the class A beta-lactamase Toho-1 correlates with the thermal stability of its catalytic intermediate analog.
    Nitanai Y; Shimamura T; Uchiyama T; Ishii Y; Takehira M; Yutani K; Matsuzawa H; Miyano M
    Biochim Biophys Acta; 2010 Apr; 1804(4):684-91. PubMed ID: 19883800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. beta-Lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin.
    Fisher J; Belasco JG; Khosla S; Knowles JR
    Biochemistry; 1980 Jun; 19(13):2895-901. PubMed ID: 6994800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the site of covalent attachment of nafcillin, a reversible suicide inhibitor of beta-lactamase.
    Tan AK; Fink AL
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):191-6. PubMed ID: 1731755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling study on a hydrolytic mechanism of class A beta-lactamases.
    Ishiguro M; Imajo S
    J Med Chem; 1996 May; 39(11):2207-18. PubMed ID: 8667364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Staphylococcus aureus sortase transpeptidase SrtA: insight into the kinetic mechanism and evidence for a reverse protonation catalytic mechanism.
    Frankel BA; Kruger RG; Robinson DE; Kelleher NL; McCafferty DG
    Biochemistry; 2005 Aug; 44(33):11188-200. PubMed ID: 16101303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases.
    Maveyraud L; Pratt RF; Samama JP
    Biochemistry; 1998 Feb; 37(8):2622-8. PubMed ID: 9485412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.