These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 8616270)
21. Efficient measurement of (3)J(N,Cgamma) and (3)J(C',Cgamma) coupling constants of aromatic residues in (13)C, (15)N-labeled proteins. Löhr F; Rüterjans H J Magn Reson; 2000 Sep; 146(1):126-31. PubMed ID: 10968965 [TBL] [Abstract][Full Text] [Related]
22. Possible role of a short extra loop of the long-chain flavodoxin from Azotobacter chroococcum in electron transfer to nitrogenase: complete 1H, 15N and 13C backbone assignments and secondary solution structure of the flavodoxin. Peelen S; Wijmenga S; Erbel PJ; Robson RL; Eady RR; Vervoort J J Biomol NMR; 1996 Jun; 7(4):315-30. PubMed ID: 8765738 [TBL] [Abstract][Full Text] [Related]
23. Hydrogen-1, carbon-13, and nitrogen-15 NMR spectroscopy of Anabaena 7120 flavodoxin: assignment of beta-sheet and flavin binding site resonances and analysis of protein-flavin interactions. Stockman BJ; Krezel AM; Markley JL; Leonhardt KG; Straus NA Biochemistry; 1990 Oct; 29(41):9600-9. PubMed ID: 2125478 [TBL] [Abstract][Full Text] [Related]
24. Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Clore GM; Bax A; Driscoll PC; Wingfield PT; Gronenborn AM Biochemistry; 1990 Sep; 29(35):8172-84. PubMed ID: 2261471 [TBL] [Abstract][Full Text] [Related]
25. A general approach for determining scalar coupling constants in polypeptides and proteins. Montelione GT; Emerson SD; Lyons BA Biopolymers; 1992 Apr; 32(4):327-34. PubMed ID: 1623127 [TBL] [Abstract][Full Text] [Related]
26. Conformation of valine side chains in ribonuclease T1 determined by NMR studies of homonuclear and heteronuclear 3J coupling constants. Karimi-Nejad Y; Schmidt JM; Rüterjans H; Schwalbe H; Greisinger C Biochemistry; 1994 May; 33(18):5481-92. PubMed ID: 8180170 [TBL] [Abstract][Full Text] [Related]
27. 1H, 13C and 15N assignment of the hydroquinone form of flavodoxin from Desulfovibrio vulgaris (Hildenborough) and comparison of the chemical shift differences with respect to the oxidized state. Yalloway GN; Löhr F; Wienk HL; Mayhew SG; Hrovat A; Knauf MA; Rüterjans H J Biomol NMR; 2003 Mar; 25(3):257-8. PubMed ID: 12652141 [No Abstract] [Full Text] [Related]
28. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 1. Kinetic evidence for cooperative effects associated with the binding of inorganic phosphate and the 5'-phosphate moiety of the cofactor. Murray TA; Swenson RP Biochemistry; 2003 Mar; 42(8):2307-16. PubMed ID: 12600198 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of the hydrogen bonding interactions and their effects on the oxidation-reduction potentials for the riboflavin complex of the Desulfovibrio vulgaris flavodoxin. Chang F; Bradley LH; Swenson RP Biochim Biophys Acta; 2001 Apr; 1504(2-3):319-28. PubMed ID: 11245795 [TBL] [Abstract][Full Text] [Related]
30. 1H, 15N, 13C, and 13CO assignments of human interleukin-4 using three-dimensional double- and triple-resonance heteronuclear magnetic resonance spectroscopy. Powers R; Garrett DS; March CJ; Frieden EA; Gronenborn AM; Clore GM Biochemistry; 1992 May; 31(17):4334-46. PubMed ID: 1567880 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of the role of specific acidic amino acid residues in electron transfer between the flavodoxin and cytochrome c3 from Desulfovibrio vulgaris. Feng Y; Swenson RP Biochemistry; 1997 Nov; 36(44):13617-28. PubMed ID: 9354631 [TBL] [Abstract][Full Text] [Related]
33. A new 2D NMR method for measurement of JHH coupling constants. Sørensen MD; Led JJ; Sørensen OW J Biomol NMR; 1994 Jan; 4(1):135-41. PubMed ID: 8130638 [TBL] [Abstract][Full Text] [Related]
34. pH-dependent spectroscopic changes associated with the hydroquinone of FMN in flavodoxins. Yalloway GN; Mayhew SG; Malthouse JP; Gallagher ME; Curley GP Biochemistry; 1999 Mar; 38(12):3753-62. PubMed ID: 10090764 [TBL] [Abstract][Full Text] [Related]
35. Redox potential difference between Desulfovibrio vulgaris and Clostridium beijerinckii flavodoxins. Ishikita H Biochemistry; 2008 Apr; 47(15):4394-402. PubMed ID: 18355044 [TBL] [Abstract][Full Text] [Related]
36. Evidence for a ternary complex formed between flavodoxin and cytochrome c3: 1H-NMR and molecular modeling studies. Palma PN; Moura I; LeGall J; Van Beeumen J; Wampler JE; Moura JJ Biochemistry; 1994 May; 33(21):6394-407. PubMed ID: 8204572 [TBL] [Abstract][Full Text] [Related]
37. Unusual lack of internal mobility and fast overall tumbling in oxidized flavodoxin from Anacystis nidulans. Zhang P; Dayie KT; Wagner G J Mol Biol; 1997 Sep; 272(3):443-55. PubMed ID: 9325102 [TBL] [Abstract][Full Text] [Related]
38. Assignment of the aliphatic 1H and 13C resonances of the Bacillus subtilis glucose permease IIA domain using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Fairbrother WJ; Palmer AG; Rance M; Reizer J; Saier MH; Wright PE Biochemistry; 1992 May; 31(18):4413-25. PubMed ID: 1581296 [TBL] [Abstract][Full Text] [Related]
39. HNCCH-TOCSY, a triple resonance experiment for the correlation of backbone 13C alpha and 15N resonances with aliphatic side-chain proton resonances and for measuring vicinal 13CO,1H beta coupling constants in proteins. Weisemann R; Löhr F; Rüterjans H J Biomol NMR; 1994 Jul; 4(4):587-93. PubMed ID: 8075544 [TBL] [Abstract][Full Text] [Related]
40. Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris flavodoxin. McCarthy AA; Walsh MA; Verma CS; O'Connell DP; Reinhold M; Yalloway GN; D'Arcy D; Higgins TM; Voordouw G; Mayhew SG Biochemistry; 2002 Sep; 41(36):10950-62. PubMed ID: 12206666 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]