BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8616518)

  • 1. Antidepressant treatment influences cyclic AMP accumulation induced by excitatory amino acids in rat brain.
    Pilc A; Legutko B
    Pol J Pharmacol; 1995; 47(4):359-61. PubMed ID: 8616518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of prolonged antidepressant treatment on the changes in cyclic AMP accumulation induced by excitatory amino acids in rat cerebral cortical slices.
    Pilc A; Legutko B
    Neuroreport; 1995 Dec; 7(1):85-8. PubMed ID: 8742423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enhancement and the inhibition of noradrenaline-induced cyclic AMP accumulation in rat brain by stimulation of metabotropic glutamate receptors.
    Legutko B; Pałucha A; Branski P; Pilc A
    Acta Physiol Hung; 1996; 84(3):301-3. PubMed ID: 9219617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of imipramine and adrenocorticotropin administration on the rat brain norepinephrine-coupled cyclic nucleotide generating system: alterations in alpha and beta adrenergic components.
    Duman RS; Strada SJ; Enna SJ
    J Pharmacol Exp Ther; 1985 Aug; 234(2):409-14. PubMed ID: 2991501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activity of rat brain nitric oxide synthase following chronic antidepressant treatment.
    Jopek R; Kata M; Nowak G
    Acta Pol Pharm; 1999; 56(4):307-10. PubMed ID: 10635364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic antidepressant exposure enhances 5-hydroxytryptamine7 receptor-mediated cyclic adenosine monophosphate accumulation in rat frontocortical astrocytes.
    Shimizu M; Nishida A; Zensho H; Yamawaki S
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1551-8. PubMed ID: 8968382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of lithium on noradrenaline-induced cyclic AMP accumulation in rat brain: inhibition after chronic treatment and absence of supersensitivity.
    Ebstein RP; Hermoni M; Belmaker RH
    J Pharmacol Exp Ther; 1980 Apr; 213(1):161-7. PubMed ID: 6244392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat.
    Sairanen M; O'Leary OF; Knuuttila JE; Castrén E
    Neuroscience; 2007 Jan; 144(1):368-74. PubMed ID: 17049169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. St John's wort, hypericin, and imipramine: a comparative analysis of mRNA levels in brain areas involved in HPA axis control following short-term and long-term administration in normal and stressed rats.
    Butterweck V; Winterhoff H; Herkenham M
    Mol Psychiatry; 2001 Sep; 6(5):547-64. PubMed ID: 11526469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel metabotropic glutamate receptor negatively coupled to adenylyl cyclase in cultured rat cerebellar astrocytes.
    Kanumilli S; Toms NJ; Roberts PJ
    Glia; 2004 Apr; 46(1):1-7. PubMed ID: 14999808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of imipramine treatment on the group I of metabotropic glutamate receptors in CA1 region of hippocampus.
    Pałucha A; Brański P; Tokarski K; Bijak M; Pilc A
    Pol J Pharmacol; 1997; 49(6):495-7. PubMed ID: 9566055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of chronic antidepressant or electroconvulsive shock treatment on mGLuR1a immunoreactivity expression in the rat hippocampus.
    Bajkowska M; Brański P; Smiałowska M; Pilc A
    Pol J Pharmacol; 1999; 51(6):539-41. PubMed ID: 10817534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of c-Fos and NGF1-A by antidepressant treatments.
    Morinobu S; Strausbaugh H; Terwilliger R; Duman RS
    Synapse; 1997 Apr; 25(4):313-20. PubMed ID: 9097389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in serum and brain trace element levels after antidepressant treatment. Part II. Copper.
    Schlegel-Zawadzka M; Nowak G
    Biol Trace Elem Res; 2000 Jan; 73(1):37-45. PubMed ID: 10949967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of phosphoinositide turnover in neonatal rat cerebral cortex by group I- and II- selective metabotropic glutamate receptor agonists.
    Mistry R; Golding N; Challiss RA
    Br J Pharmacol; 1998 Feb; 123(3):581-9. PubMed ID: 9504400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the forskolin-induced cyclic AMP accumulation by corticosterone.
    Czyrak A
    Pol J Pharmacol; 1996; 48(6):595-9. PubMed ID: 9112699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of imipramine and amantadine in the forced swimming test in rats. Behavioral and pharmacokinetic studies.
    Rogóz Z; Skuza G; Kuśmider M; Wójcikowski J; Kot M; Daniel WA
    Pol J Pharmacol; 2004; 56(2):179-85. PubMed ID: 15156068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of electroconvulsive treatment induced beta-adrenergic down-regulation by previous chronic imipramine administration: the involvement of protein kinase C.
    Nalepa I; Vetulani J
    Pol J Pharmacol; 1996; 48(5):489-94. PubMed ID: 9112690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of combined treatment with imipramine and metyrapone in the forced swimming test in rats. Behavioral and pharmacokinetic studies.
    Rogóz Z; Skuza G; Wójcikowski J; Daniel WA
    Pol J Pharmacol; 2003; 55(6):993-9. PubMed ID: 14730094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does interaction between zinc and glutamate system play a significant role in the mechanism of antidepressant action?
    Nowak G
    Acta Pol Pharm; 2001; 58(1):73-5. PubMed ID: 11370292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.