BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8616899)

  • 1. Positional information within the Mu transposase tetramer: catalytic contributions of individual monomers.
    Yang JY; Jayaram M; Harshey RM
    Cell; 1996 May; 85(3):447-55. PubMed ID: 8616899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase.
    Savilahti H; Mizuuchi K
    Cell; 1996 Apr; 85(2):271-80. PubMed ID: 8612279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete transposition requires four active monomers in the mu transposase tetramer.
    Baker TA; Kremenstova E; Luo L
    Genes Dev; 1994 Oct; 8(20):2416-28. PubMed ID: 7958906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition.
    Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MuA transposase separates DNA sequence recognition from catalysis.
    Goldhaber-Gordon I; Early MH; Baker TA
    Biochemistry; 2003 Dec; 42(49):14633-42. PubMed ID: 14661976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MuB protein allosterically activates strand transfer by the transposase of phage Mu.
    Baker TA; Mizuuchi M; Mizuuchi K
    Cell; 1991 Jun; 65(6):1003-13. PubMed ID: 1646076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition.
    Namgoong SY; Harshey RM
    EMBO J; 1998 Jul; 17(13):3775-85. PubMed ID: 9649447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mu transposase tetramer is inactive in unassisted strand transfer: an auto-allosteric effect of Mu A promotes the reaction in the absence of Mu B.
    Wu Z; Chaconas G
    J Mol Biol; 1997 Mar; 267(1):132-41. PubMed ID: 9096212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A domain sharing model for active site assembly within the Mu A tetramer during transposition: the enhancer may specify domain contributions.
    Yang JY; Kim K; Jayaram M; Harshey RM
    EMBO J; 1995 May; 14(10):2374-84. PubMed ID: 7774595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of residues in the Mu transposase essential for catalysis.
    Baker TA; Luo L
    Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6654-8. PubMed ID: 7912831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage.
    Wu Z; Chaconas G
    EMBO J; 1995 Aug; 14(15):3835-43. PubMed ID: 7641701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration.
    Rice P; Mizuuchi K
    Cell; 1995 Jul; 82(2):209-20. PubMed ID: 7628012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds.
    Mizuuchi M; Baker TA; Mizuuchi K
    Cell; 1995 Nov; 83(3):375-85. PubMed ID: 8521467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation.
    Mizuuchi M; Mizuuchi K
    Cell; 1989 Jul; 58(2):399-408. PubMed ID: 2546681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phage Mu transpososome core: DNA requirements for assembly and function.
    Savilahti H; Rice PA; Mizuuchi K
    EMBO J; 1995 Oct; 14(19):4893-903. PubMed ID: 7588618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disassembly of the Mu transposase tetramer by the ClpX chaperone.
    Levchenko I; Luo L; Baker TA
    Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites.
    Williams TL; Jackson EL; Carritte A; Baker TA
    Genes Dev; 1999 Oct; 13(20):2725-37. PubMed ID: 10541558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNase protection analysis of the stable synaptic complexes involved in Mu transposition.
    Mizuuchi M; Baker TA; Mizuuchi K
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9031-5. PubMed ID: 1656459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancer-independent variants of phage Mu transposase: enhancer-specific stimulation of catalytic activity by a partner transposase.
    Yang JY; Jayaram M; Harshey RM
    Genes Dev; 1995 Oct; 9(20):2545-55. PubMed ID: 7590234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition.
    Kuo CF; Zou AH; Jayaram M; Getzoff E; Harshey R
    EMBO J; 1991 Jun; 10(6):1585-91. PubMed ID: 1851088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.