These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 8616899)
1. Positional information within the Mu transposase tetramer: catalytic contributions of individual monomers. Yang JY; Jayaram M; Harshey RM Cell; 1996 May; 85(3):447-55. PubMed ID: 8616899 [TBL] [Abstract][Full Text] [Related]
2. Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase. Savilahti H; Mizuuchi K Cell; 1996 Apr; 85(2):271-80. PubMed ID: 8612279 [TBL] [Abstract][Full Text] [Related]
3. Complete transposition requires four active monomers in the mu transposase tetramer. Baker TA; Kremenstova E; Luo L Genes Dev; 1994 Oct; 8(20):2416-28. PubMed ID: 7958906 [TBL] [Abstract][Full Text] [Related]
4. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition. Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730 [TBL] [Abstract][Full Text] [Related]
5. MuA transposase separates DNA sequence recognition from catalysis. Goldhaber-Gordon I; Early MH; Baker TA Biochemistry; 2003 Dec; 42(49):14633-42. PubMed ID: 14661976 [TBL] [Abstract][Full Text] [Related]
6. MuB protein allosterically activates strand transfer by the transposase of phage Mu. Baker TA; Mizuuchi M; Mizuuchi K Cell; 1991 Jun; 65(6):1003-13. PubMed ID: 1646076 [TBL] [Abstract][Full Text] [Related]
7. The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition. Namgoong SY; Harshey RM EMBO J; 1998 Jul; 17(13):3775-85. PubMed ID: 9649447 [TBL] [Abstract][Full Text] [Related]
8. The Mu transposase tetramer is inactive in unassisted strand transfer: an auto-allosteric effect of Mu A promotes the reaction in the absence of Mu B. Wu Z; Chaconas G J Mol Biol; 1997 Mar; 267(1):132-41. PubMed ID: 9096212 [TBL] [Abstract][Full Text] [Related]
9. A domain sharing model for active site assembly within the Mu A tetramer during transposition: the enhancer may specify domain contributions. Yang JY; Kim K; Jayaram M; Harshey RM EMBO J; 1995 May; 14(10):2374-84. PubMed ID: 7774595 [TBL] [Abstract][Full Text] [Related]
10. Identification of residues in the Mu transposase essential for catalysis. Baker TA; Luo L Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6654-8. PubMed ID: 7912831 [TBL] [Abstract][Full Text] [Related]
11. A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage. Wu Z; Chaconas G EMBO J; 1995 Aug; 14(15):3835-43. PubMed ID: 7641701 [TBL] [Abstract][Full Text] [Related]
12. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Rice P; Mizuuchi K Cell; 1995 Jul; 82(2):209-20. PubMed ID: 7628012 [TBL] [Abstract][Full Text] [Related]
13. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds. Mizuuchi M; Baker TA; Mizuuchi K Cell; 1995 Nov; 83(3):375-85. PubMed ID: 8521467 [TBL] [Abstract][Full Text] [Related]
14. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Mizuuchi M; Mizuuchi K Cell; 1989 Jul; 58(2):399-408. PubMed ID: 2546681 [TBL] [Abstract][Full Text] [Related]
15. The phage Mu transpososome core: DNA requirements for assembly and function. Savilahti H; Rice PA; Mizuuchi K EMBO J; 1995 Oct; 14(19):4893-903. PubMed ID: 7588618 [TBL] [Abstract][Full Text] [Related]
16. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Levchenko I; Luo L; Baker TA Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391 [TBL] [Abstract][Full Text] [Related]
17. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Williams TL; Jackson EL; Carritte A; Baker TA Genes Dev; 1999 Oct; 13(20):2725-37. PubMed ID: 10541558 [TBL] [Abstract][Full Text] [Related]
18. DNase protection analysis of the stable synaptic complexes involved in Mu transposition. Mizuuchi M; Baker TA; Mizuuchi K Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9031-5. PubMed ID: 1656459 [TBL] [Abstract][Full Text] [Related]
19. Enhancer-independent variants of phage Mu transposase: enhancer-specific stimulation of catalytic activity by a partner transposase. Yang JY; Jayaram M; Harshey RM Genes Dev; 1995 Oct; 9(20):2545-55. PubMed ID: 7590234 [TBL] [Abstract][Full Text] [Related]
20. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition. Kuo CF; Zou AH; Jayaram M; Getzoff E; Harshey R EMBO J; 1991 Jun; 10(6):1585-91. PubMed ID: 1851088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]