These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. Wang P; Fraser H; Lloyd SG; McVeigh JJ; Belardinelli L; Chatham JC J Pharmacol Exp Ther; 2007 Apr; 321(1):213-20. PubMed ID: 17202401 [TBL] [Abstract][Full Text] [Related]
3. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. Lopaschuk GD; Wambolt RB; Barr RL J Pharmacol Exp Ther; 1993 Jan; 264(1):135-44. PubMed ID: 8380856 [TBL] [Abstract][Full Text] [Related]
4. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Kantor PF; Lucien A; Kozak R; Lopaschuk GD Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420 [TBL] [Abstract][Full Text] [Related]
5. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Broderick TL; Quinney HA; Barker CC; Lopaschuk GD Circulation; 1993 Mar; 87(3):972-81. PubMed ID: 8443916 [TBL] [Abstract][Full Text] [Related]
6. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart. Schönekess BO; Brindley PG; Lopaschuk GD Can J Physiol Pharmacol; 1995 Nov; 73(11):1632-40. PubMed ID: 8789418 [TBL] [Abstract][Full Text] [Related]
7. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. Liu Q; Docherty JC; Rendell JC; Clanachan AS; Lopaschuk GD J Am Coll Cardiol; 2002 Feb; 39(4):718-25. PubMed ID: 11849874 [TBL] [Abstract][Full Text] [Related]
8. Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. Liu Q; Clanachan AS; Lopaschuk GD Am J Physiol; 1998 Sep; 275(3):E392-9. PubMed ID: 9725804 [TBL] [Abstract][Full Text] [Related]
9. Effects of TA-3090, a new calcium channel blocker, on myocardial substrate utilization in ischemic and nonischemic isolated working fatty acid-perfused rat hearts. Davies NJ; McVeigh JJ; Lopaschuk GD Circ Res; 1991 Mar; 68(3):807-17. PubMed ID: 1742868 [TBL] [Abstract][Full Text] [Related]
10. Substrate competition in postischemic myocardium. Effect of substrate availability during reperfusion on metabolic and contractile recovery in isolated rat hearts. Tamm C; Benzi R; Papageorgiou I; Tardy I; Lerch R Circ Res; 1994 Dec; 75(6):1103-12. PubMed ID: 7955147 [TBL] [Abstract][Full Text] [Related]
12. Changes in substrate metabolism in isolated mouse hearts following ischemia-reperfusion. Aasum E; Hafstad AD; Larsen TS Mol Cell Biochem; 2003 Jul; 249(1-2):97-103. PubMed ID: 12956404 [TBL] [Abstract][Full Text] [Related]
13. The relative contribution of glucose and fatty acids to ATP production in hearts reperfused following ischemia. Lopaschuk GD; Saddik M Mol Cell Biochem; 1992 Oct; 116(1-2):111-6. PubMed ID: 1480139 [TBL] [Abstract][Full Text] [Related]
14. Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. Clarke B; Wyatt KM; McCormack JG J Mol Cell Cardiol; 1996 Feb; 28(2):341-50. PubMed ID: 8729066 [TBL] [Abstract][Full Text] [Related]
15. High levels of fatty acids increase contractile function of neonatal rabbit hearts during reperfusion following ischemia. Ito M; Jaswal JS; Lam VH; Oka T; Zhang L; Beker DL; Lopaschuk GD; Rebeyka IM Am J Physiol Heart Circ Physiol; 2010 May; 298(5):H1426-37. PubMed ID: 20154256 [TBL] [Abstract][Full Text] [Related]
16. K(ATP)-channel activation: effects on myocardial recovery from ischaemia and role in the cardioprotective response to adenosine A1-receptor stimulation. Ford WR; Lopaschuk GD; Schulz R; Clanachan AS Br J Pharmacol; 1998 Jun; 124(4):639-46. PubMed ID: 9690854 [TBL] [Abstract][Full Text] [Related]
17. Adverse effects of free fatty acid associated with increased oxidative stress in postischemic isolated rat hearts. Gambert S; Vergely C; Filomenko R; Moreau D; Bettaieb A; Opie LH; Rochette L Mol Cell Biochem; 2006 Feb; 283(1-2):147-52. PubMed ID: 16444597 [TBL] [Abstract][Full Text] [Related]
18. L-carnitine increases glucose metabolism and mechanical function following ischaemia in diabetic rat heart. Broderick TL; Quinney HA; Lopaschuk GD Cardiovasc Res; 1995 Mar; 29(3):373-8. PubMed ID: 7781011 [TBL] [Abstract][Full Text] [Related]
19. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Lopaschuk GD; Spafford MA; Davies NJ; Wall SR Circ Res; 1990 Feb; 66(2):546-53. PubMed ID: 2297817 [TBL] [Abstract][Full Text] [Related]
20. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. Broderick TL; Quinney HA; Lopaschuk GD J Biol Chem; 1992 Feb; 267(6):3758-63. PubMed ID: 1740427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]