These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 8617232)
1. Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin. Valeva A; Weisser A; Walker B; Kehoe M; Bayley H; Bhakdi S; Palmer M EMBO J; 1996 Apr; 15(8):1857-64. PubMed ID: 8617232 [TBL] [Abstract][Full Text] [Related]
2. Staphylococcal alpha-toxin: the role of the N-terminus in formation of the heptameric pore -- a fluorescence study. Valeva A; Pongs J; Bhakdi S; Palmer M Biochim Biophys Acta; 1997 Apr; 1325(2):281-6. PubMed ID: 9168153 [TBL] [Abstract][Full Text] [Related]
3. Staphylococcal alpha-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages. Valeva A; Palmer M; Bhakdi S Biochemistry; 1997 Oct; 36(43):13298-304. PubMed ID: 9341221 [TBL] [Abstract][Full Text] [Related]
4. Streptolysin O: a proposed model of allosteric interaction between a pore-forming protein and its target lipid bilayer. Palmer M; Vulicevic I; Saweljew P; Valeva A; Kehoe M; Bhakdi S Biochemistry; 1998 Feb; 37(8):2378-83. PubMed ID: 9485385 [TBL] [Abstract][Full Text] [Related]
5. Membrane pore architecture of a cytolytic toxin from Bacillus thuringiensis. Promdonkoy B; Ellar DJ Biochem J; 2000 Aug; 350 Pt 1(Pt 1):275-82. PubMed ID: 10926854 [TBL] [Abstract][Full Text] [Related]
6. Correct oligomerization is a prerequisite for insertion of the central molecular domain of staphylococcal alpha-toxin into the lipid bilayer. Valeva A; Palmer M; Hilgert K; Kehoe M; Bhakdi S Biochim Biophys Acta; 1995 Jun; 1236(2):213-8. PubMed ID: 7794960 [TBL] [Abstract][Full Text] [Related]
7. The staphylococcal alpha-toxin pore has a flexible conformation. Vécsey-Semjén B; Knapp S; Möllby R; van der Goot FG Biochemistry; 1999 Apr; 38(14):4296-302. PubMed ID: 10194347 [TBL] [Abstract][Full Text] [Related]
8. Single-molecule visualization of environment-sensitive fluorophores inserted into cell membranes by staphylococcal gamma-hemolysin. Nguyen AH; Nguyen VT; Kamio Y; Higuchi H Biochemistry; 2006 Feb; 45(8):2570-6. PubMed ID: 16489750 [TBL] [Abstract][Full Text] [Related]
9. A functional protein pore with a "retro" transmembrane domain. Cheley S; Braha O; Lu X; Conlan S; Bayley H Protein Sci; 1999 Jun; 8(6):1257-67. PubMed ID: 10386875 [TBL] [Abstract][Full Text] [Related]
10. Caveolin-1 binding motif of alpha-hemolysin: its role in stability and pore formation. Pany S; Vijayvargia R; Krishnasastry MV Biochem Biophys Res Commun; 2004 Sep; 322(1):29-36. PubMed ID: 15313169 [TBL] [Abstract][Full Text] [Related]
11. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes. Saleh MT; Ferguson J; Boggs JM; Gariépy J Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710 [TBL] [Abstract][Full Text] [Related]
12. Identification of the membrane penetrating domain of Vibrio cholerae cytolysin as a beta-barrel structure. Valeva A; Walev I; Boukhallouk F; Wassenaar TM; Heinz N; Hedderich J; Lautwein S; Möcking M; Weis S; Zitzer A; Bhakdi S Mol Microbiol; 2005 Jul; 57(1):124-31. PubMed ID: 15948954 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Olson R; Nariya H; Yokota K; Kamio Y; Gouaux E Nat Struct Biol; 1999 Feb; 6(2):134-40. PubMed ID: 10048924 [TBL] [Abstract][Full Text] [Related]
14. Structure-function relationships of a membrane pore forming toxin revealed by reversion mutagenesis. Promdonkoy B; Ellar DJ Mol Membr Biol; 2005; 22(4):327-37. PubMed ID: 16154904 [TBL] [Abstract][Full Text] [Related]
15. Cysteine-scanning mutagenesis of an eukaryotic pore-forming toxin from sea anemone: topology in lipid membranes. Anderluh G; Barlic A; Podlesek Z; Macek P; Pungercar J; Gubensek F; Zecchini ML; Serra MD; Menestrina G Eur J Biochem; 1999 Jul; 263(1):128-36. PubMed ID: 10429196 [TBL] [Abstract][Full Text] [Related]
16. The internal cavity of the staphylococcal alpha-hemolysin pore accommodates approximately 175 exogenous amino acid residues. Jung Y; Cheley S; Braha O; Bayley H Biochemistry; 2005 Jun; 44(25):8919-29. PubMed ID: 15966717 [TBL] [Abstract][Full Text] [Related]
17. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related]
18. Homologous versus heterologous interactions in the bicomponent staphylococcal gamma-haemolysin pore. Viero G; Cunaccia R; Prévost G; Werner S; Monteil H; Keller D; Joubert O; Menestrina G; Dalla Serra M Biochem J; 2006 Feb; 394(Pt 1):217-25. PubMed ID: 16241903 [TBL] [Abstract][Full Text] [Related]
19. A rivet model for channel formation by aerolysin-like pore-forming toxins. Iacovache I; Paumard P; Scheib H; Lesieur C; Sakai N; Matile S; Parker MW; van der Goot FG EMBO J; 2006 Feb; 25(3):457-66. PubMed ID: 16424900 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. Olson R; Gouaux E J Mol Biol; 2005 Jul; 350(5):997-1016. PubMed ID: 15978620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]