These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 8617253)
1. A new mechanism in serine proteases catalysis exhibited by dipeptidyl peptidase IV (DP IV)--Results of PM3 semiempirical thermodynamic studies supported by experimental results. Brandt W; Ludwig O; Thondorf I; Barth A Eur J Biochem; 1996 Feb; 236(1):109-14. PubMed ID: 8617253 [TBL] [Abstract][Full Text] [Related]
2. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. Ishida T; Kato S J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of proline-specific proteinases: (I) Substrate specificity of dipeptidyl peptidase IV from pig kidney and proline-specific endopeptidase from Flavobacterium meningosepticum. Heins J; Welker P; Schönlein C; Born I; Hartrodt B; Neubert K; Tsuru D; Barth A Biochim Biophys Acta; 1988 May; 954(2):161-9. PubMed ID: 2896517 [TBL] [Abstract][Full Text] [Related]
4. Ab initio QM/MM dynamics simulation of the tetrahedral intermediate of serine proteases: insights into the active site hydrogen-bonding network. Topf M; Várnai P; Richards WG J Am Chem Soc; 2002 Dec; 124(49):14780-8. PubMed ID: 12465991 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations of the acyl-enzyme and the tetrahedral intermediate in the deacylation step of serine proteases. Topf M; Várnai P; Schofield CJ; Richards WG Proteins; 2002 May; 47(3):357-69. PubMed ID: 11948789 [TBL] [Abstract][Full Text] [Related]
6. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase. Topf M; Richards WG J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783 [TBL] [Abstract][Full Text] [Related]
7. Potent inhibitors of dipeptidyl peptidase IV and their mechanisms of inhibition. Stöckel-Maschek A; Stiebitz B; Born I; Faust J; Mögelin W; Neubert K Adv Exp Med Biol; 2000; 477():117-23. PubMed ID: 10849737 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of Gly-Pro-pNA cleavage catalyzed by dipeptidyl peptidase-IV and its inhibition by saxagliptin (BMS-477118). Kim YB; Kopcho LM; Kirby MS; Hamann LG; Weigelt CA; Metzler WJ; Marcinkeviciene J Arch Biochem Biophys; 2006 Jan; 445(1):9-18. PubMed ID: 16364232 [TBL] [Abstract][Full Text] [Related]
9. Influence on proline-specific enzymes of a substrate containing the thioxoaminoacyl-prolyl peptide bond. Schutkowski M; Neubert K; Fischer G Eur J Biochem; 1994 Apr; 221(1):455-61. PubMed ID: 7909521 [TBL] [Abstract][Full Text] [Related]
10. The QM/MM molecular dynamics and free energy simulations of the acylation reaction catalyzed by the serine-carboxyl peptidase kumamolisin-As. Xu Q; Guo HB; Wlodawer A; Nakayama T; Guo H Biochemistry; 2007 Mar; 46(12):3784-92. PubMed ID: 17326662 [TBL] [Abstract][Full Text] [Related]
11. Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. Bjelke JR; Christensen J; Branner S; Wagtmann N; Olsen C; Kanstrup AB; Rasmussen HB J Biol Chem; 2004 Aug; 279(33):34691-7. PubMed ID: 15175333 [TBL] [Abstract][Full Text] [Related]
12. A model of the active site of dipeptidyl peptidase IV predicted by comparative molecular field analysis and molecular modelling simulations. Brandt W; Lehmann T; Thondorf I; Born I; Schutkowski M; Rahfeld JU; Neubert K; Barth A Int J Pept Protein Res; 1995 Dec; 46(6):494-507. PubMed ID: 8748710 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of action of aspartic proteases involves 'push-pull' catalysis. Polgár L FEBS Lett; 1987 Jul; 219(1):1-4. PubMed ID: 3036594 [TBL] [Abstract][Full Text] [Related]
14. Probing prime substrate binding sites of human dipeptidyl peptidase-IV using competitive substrate approach. Kopcho LM; Kim YB; Wang A; Liu MA; Kirby MS; Marcinkeviciene J Arch Biochem Biophys; 2005 Apr; 436(2):367-76. PubMed ID: 15797249 [TBL] [Abstract][Full Text] [Related]
15. The conformation around the peptide bond between the P1- and P2-positions is important for catalytic activity of some proline-specific proteases. Fischer G; Heins J; Barth A Biochim Biophys Acta; 1983 Feb; 742(3):452-62. PubMed ID: 6340741 [TBL] [Abstract][Full Text] [Related]
16. Do cleavages of amides by serine proteases occur through a stepwise pathway involving tetrahedral intermediates? Komiyama M; Bender ML Proc Natl Acad Sci U S A; 1979 Feb; 76(2):557-60. PubMed ID: 284381 [TBL] [Abstract][Full Text] [Related]
17. Similarities of the substrate cleavage catalyzed by proline specific endopeptidase and dipeptidyl peptidase IV. Weidhase R; Welker P; Dove S; Neubert K; Yoshimoto T; Tsuru D; Barth A Pharmazie; 1984 Dec; 39(12):835-7. PubMed ID: 6152335 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Aertgeerts K; Ye S; Tennant MG; Kraus ML; Rogers J; Sang BC; Skene RJ; Webb DR; Prasad GS Protein Sci; 2004 Feb; 13(2):412-21. PubMed ID: 14718659 [TBL] [Abstract][Full Text] [Related]
19. Different modes of dipeptidyl peptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1 Tat indicate at least two inhibitor binding sites. Lorey S; Stöckel-Maschek A; Faust J; Brandt W; Stiebitz B; Gorrell MD; Kähne T; Mrestani-Klaus C; Wrenger S; Reinhold D; Ansorge S; Neubert K Eur J Biochem; 2003 May; 270(10):2147-56. PubMed ID: 12752434 [TBL] [Abstract][Full Text] [Related]
20. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study. Ishida T; Kato S J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]