These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 8617253)
21. Molecular mechanics calculations on Rous sarcoma virus protease with peptide substrates. Weber IT; Harrison RW Protein Sci; 1997 Nov; 6(11):2365-74. PubMed ID: 9385639 [TBL] [Abstract][Full Text] [Related]
22. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Frey PA; Whitt SA; Tobin JB Science; 1994 Jun; 264(5167):1927-30. PubMed ID: 7661899 [TBL] [Abstract][Full Text] [Related]
23. Cleavage of beta-lactone ring by serine protease. Mechanistic implications. Kim DH; Park JI; Chung SJ; Park JD; Park NK; Han JH Bioorg Med Chem; 2002 Aug; 10(8):2553-60. PubMed ID: 12057644 [TBL] [Abstract][Full Text] [Related]
24. Selective inhibition of dipeptidyl peptidase 4 by targeting a substrate-specific secondary binding site. Kühn-Wache K; Bär JW; Hoffmann T; Wolf R; Rahfeld JU; Demuth HU Biol Chem; 2011 Mar; 392(3):223-31. PubMed ID: 21284559 [TBL] [Abstract][Full Text] [Related]
27. A general method for making peptide therapeutics resistant to serine protease degradation: application to dipeptidyl peptidase IV substrates. Heard KR; Wu W; Li Y; Zhao P; Woznica I; Lai JH; Beinborn M; Sanford DG; Dimare MT; Chiluwal AK; Peters DE; Whicher D; Sudmeier JL; Bachovchin WW J Med Chem; 2013 Nov; 56(21):8339-51. PubMed ID: 24044354 [TBL] [Abstract][Full Text] [Related]
28. Reactions between dipeptidyl peptidase IV and diacyl hydroxylamines: mechanistic investigations. Demuth HU; Neumann U; Barth A J Enzyme Inhib; 1989; 2(4):239-48. PubMed ID: 2566666 [TBL] [Abstract][Full Text] [Related]
29. N-linked glycosylation of dipeptidyl peptidase IV (CD26): effects on enzyme activity, homodimer formation, and adenosine deaminase binding. Aertgeerts K; Ye S; Shi L; Prasad SG; Witmer D; Chi E; Sang BC; Wijnands RA; Webb DR; Swanson RV Protein Sci; 2004 Jan; 13(1):145-54. PubMed ID: 14691230 [TBL] [Abstract][Full Text] [Related]
30. Factors determining the relative stability of anionic tetrahedral complexes in serine protease catalysis and inhibition. Shokhen M; Albeck A Proteins; 2000 Jul; 40(1):154-67. PubMed ID: 10813840 [TBL] [Abstract][Full Text] [Related]
31. Dipeptide-derived diphenyl phosphonate esters: mechanism-based inhibitors of dipeptidyl peptidase IV. Lambeir AM; Borloo M; De Meester I; Belyaev A; Augustyns K; Hendriks D; Scharpé S; Haemers A Biochim Biophys Acta; 1996 May; 1290(1):76-82. PubMed ID: 8645710 [TBL] [Abstract][Full Text] [Related]
32. Thioxo amino acid pyrrolidides and thiazolidides: new inhibitors of proline specific peptidases. Stöckel-Maschek A; Mrestani-Klaus C; Stiebitz B; Demuth H; Neubert K Biochim Biophys Acta; 2000 Jun; 1479(1-2):15-31. PubMed ID: 11004527 [TBL] [Abstract][Full Text] [Related]
33. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis. Whiting AK; Peticolas WL Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385 [TBL] [Abstract][Full Text] [Related]
34. Structural analyses on intermediates in serine protease catalysis. Liu B; Schofield CJ; Wilmouth RC J Biol Chem; 2006 Aug; 281(33):24024-35. PubMed ID: 16754679 [TBL] [Abstract][Full Text] [Related]
35. Characterisation of human dipeptidyl peptidase IV expressed in Pichia pastoris. A structural and mechanistic comparison between the recombinant human and the purified porcine enzyme. Bär J; Weber A; Hoffmann T; Stork J; Wermann M; Wagner L; Aust S; Gerhartz B; Demuth HU Biol Chem; 2003 Dec; 384(12):1553-63. PubMed ID: 14719797 [TBL] [Abstract][Full Text] [Related]
36. Catalytic role of proton transfers in the formation of a tetrahedral adduct in a serine carboxyl peptidase. Guo H; Wlodawer A; Nakayama T; Xu Q; Guo H Biochemistry; 2006 Aug; 45(30):9129-37. PubMed ID: 16866358 [TBL] [Abstract][Full Text] [Related]
37. Low-barrier hydrogen bond hypothesis in the catalytic triad residue of serine proteases: correlation between structural rearrangement and chemical shifts in the acylation process. Ishida T Biochemistry; 2006 May; 45(17):5413-20. PubMed ID: 16634622 [TBL] [Abstract][Full Text] [Related]
38. Cloning and characterization of dipeptidyl peptidase 10, a new member of an emerging subgroup of serine proteases. Qi SY; Riviere PJ; Trojnar J; Junien JL; Akinsanya KO Biochem J; 2003 Jul; 373(Pt 1):179-89. PubMed ID: 12662155 [TBL] [Abstract][Full Text] [Related]
39. Molecular orbital studies of enzyme activity: I: Charge relay system and tetrahedral intermediate in acylation of serine proteinases. Scheiner S; Kleier DA; Lipscomb WN Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2606-10. PubMed ID: 1058476 [TBL] [Abstract][Full Text] [Related]
40. Mechanistic consequences of charge transfer systems in serine proteases and angiotensin: semiempirical computations. Rauk A; Hamilton G; Moore GJ Biochem Biophys Res Commun; 1987 Jun; 145(3):1349-55. PubMed ID: 3300646 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]