BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 8617365)

  • 1. The o-diphenol oxidase activity of arthropod hemocyanin.
    Zlateva T; Di Muro P; Salvato B; Beltramini M
    FEBS Lett; 1996 Apr; 384(3):251-4. PubMed ID: 8617365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism.
    Decker H; Tuczek F
    Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the tertiary structure in the diphenol oxidase activity of Octopus vulgaris hemocyanin.
    Campello S; Beltramini M; Giordano G; Di Muro P; Marino SM; Bubacco L
    Arch Biochem Biophys; 2008 Mar; 471(2):159-67. PubMed ID: 18237542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The catalytic effect of tyrosinase upon oxidation of 2-hydroxyestradiol in presence of catechol.
    Jacobsohn GM; Jacobsohn MK
    Arch Biochem Biophys; 1984 Jul; 232(1):189-96. PubMed ID: 6430238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity.
    Salvato B; Santamaria M; Beltramini M; Alzuet G; Casella L
    Biochemistry; 1998 Oct; 37(40):14065-77. PubMed ID: 9760242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemocyanin-derived phenoloxidase activity in the spiny lobster Panulirus argus (Latreille, 1804).
    Perdomo-Morales R; Montero-Alejo V; Perera E; Pardo-Ruiz Z; Alonso-Jiménez E
    Biochim Biophys Acta; 2008 Apr; 1780(4):652-8. PubMed ID: 18241679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenoloxidase activity of Helix aspersa maxima (garden snail, gastropod) hemocyanin.
    Raynova Y; Doumanova L; Idakieva KN
    Protein J; 2013 Dec; 32(8):609-18. PubMed ID: 24243490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of oxygen and carbon monoxide to arthropod hemocyanin: an allosteric analysis.
    Richey B; Decker H; Gill SJ
    Biochemistry; 1985 Jan; 24(1):109-17. PubMed ID: 3994961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and enzymic oxidation by tyrosinase of 3,4-dihydroxymandelate.
    Cabanes J; Sanchez-Ferrer A; Bru R; García-Carmona F
    Biochem J; 1988 Dec; 256(2):681-4. PubMed ID: 3146978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols.
    Peñalver MJ; Hiner AN; Rodríguez-López JN; García-Cánovas F; Tudela J
    Biochim Biophys Acta; 2002 May; 1597(1):140-8. PubMed ID: 12009413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones.
    Fenoll LG; Rodríguez-López JN; García-Sevilla F; García-Ruiz PA; Varón R; García-Cánovas F; Tudela J
    Biochim Biophys Acta; 2001 Jul; 1548(1):1-22. PubMed ID: 11451433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and enzymatic oxidation of 4-methylcatechol in the presence and absence of L-serine. Spectrophotometric determination of intermediates.
    Cabanes J; García-Cánovas F; García-Carmona F
    Biochim Biophys Acta; 1987 Aug; 914(2):190-7. PubMed ID: 3111537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin.
    Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B
    J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
    Ramsden CA; Riley PA
    Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper transfer between Neurospora copper metallothionein and type 3 copper apoproteins.
    Beltramini M; Lerch K
    FEBS Lett; 1982 Jun; 142(2):219-22. PubMed ID: 6809496
    [No Abstract]   [Full Text] [Related]  

  • 16. The binding of azide to copper-containing and cobalt-containing forms of hemocyanin from the mediterranean crab Carcinus aestuarii.
    Alzuet G; Bubacco L; Casella L; Rocco GP; Salvato B; Beltramini M
    Eur J Biochem; 1997 Jul; 247(2):688-94. PubMed ID: 9266714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of 3,4-dihydroxymandelic acid catalyzed by tyrosinase.
    Martínez Ortiz F; Tudela Serrano J; Rodríguez López JN; Varón Castellanos R; Lozano Teruel JA; García-Cánovas F
    Biochim Biophys Acta; 1988 Nov; 957(1):158-63. PubMed ID: 2846069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification, molecular cloning, and phylogenetic analysis of a non-respiratory pseudo-hemocyanin of Homarus americanus.
    Burmester T
    J Biol Chem; 1999 May; 274(19):13217-22. PubMed ID: 10224079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of catechol structure on the suicide-inactivation of tyrosinase.
    Ramsden CA; Stratford MR; Riley PA
    Org Biomol Chem; 2009 Sep; 7(17):3388-90. PubMed ID: 19675891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. o-Diphenol oxidase activity of molluscan hemocyanins.
    Hristova R; Dolashki A; Voelter W; Stevanovic S; Dolashka-Angelova P
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Mar; 149(3):439-46. PubMed ID: 18162195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.