BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 8617365)

  • 21. Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors.
    Nillius D; Jaenicke E; Decker H
    FEBS Lett; 2008 Mar; 582(5):749-54. PubMed ID: 18258201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tyrosinase action on monophenols: evidence for direct enzymatic release of o-diphenol.
    Rodríguez-López JN; Fenoll LG; Peñalver MJ; García-Ruiz PA; Varón R; Martínez-Ortíz F; García-Cánovas F; Tudela J
    Biochim Biophys Acta; 2001 Aug; 1548(2):238-56. PubMed ID: 11513969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Tyrosinase-oxidoreductase; monophenol, o-diphenol: O2].
    Porebska-Budny M; Dworzański JP
    Postepy Biochem; 1988; 34(4):375-94. PubMed ID: 3152013
    [No Abstract]   [Full Text] [Related]  

  • 24. Purification, spectroscopic characterization and o-diphenoloxidase activity of hemocyanin from a freshwater gastropod: Pila globosa.
    Naresh KN; Krupanidhi S; Rajan SS
    Protein J; 2013 Jun; 32(5):327-36. PubMed ID: 23645401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diphenol activation of the monophenolase and diphenolase activities of field bean (Dolichos lablab) polyphenol oxidase.
    Gowda LR; Paul B
    J Agric Food Chem; 2002 Mar; 50(6):1608-14. PubMed ID: 11879044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of urate and caffeine to hemocyanin of the lobster Homarus vulgaris (E.) as studied by isothermal titration calorimetry.
    Menze MA; Hellmann N; Decker H; Grieshaber MK
    Biochemistry; 2000 Sep; 39(35):10806-11. PubMed ID: 10978166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Stability and catalytic properties of o-diphenol oxidase. 1. Oxidation of o-diphenols].
    Butovich IA
    Ukr Biokhim Zh (1978); 1986; 58(1):10-6. PubMed ID: 3080835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Stability and catalytic properties of o-diphenol oxidase. 2. Oxidation of monophenols].
    Butovich IA
    Ukr Biokhim Zh (1978); 1986; 58(1):16-21. PubMed ID: 3080836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unraveling Substrate Specificity and Catalytic Promiscuity of Aspergillus oryzae Catechol Oxidase.
    Penttinen L; Rutanen C; Jänis J; Rouvinen J; Hakulinen N
    Chembiochem; 2018 Nov; 19(22):2348-2352. PubMed ID: 30204291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa.
    Aguilera F; McDougall C; Degnan BM
    BMC Evol Biol; 2013 May; 13():96. PubMed ID: 23634722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol.
    Sugumaran M; Bolton JL
    Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isoproterenol oxidation by tyrosinase: intermediates characterization and kinetic study.
    Jiménez M; García-Cánovas F; García-Carmona F; Iborra JL; Lozano JA
    Biochem Int; 1985 Jul; 11(1):51-9. PubMed ID: 2994673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor.
    Burmester T; Scheller K
    J Mol Evol; 1996 Jun; 42(6):713-28. PubMed ID: 8662023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme.
    Adachi K; Hirata T; Nishioka T; Sakaguchi M
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Jan; 134(1):135-41. PubMed ID: 12524041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry.
    Korytowski W; Sarna T; Kalyanaraman B; Sealy RC
    Biochim Biophys Acta; 1987 Jun; 924(3):383-92. PubMed ID: 3036239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase.
    Toussaint O; Lerch K
    Biochemistry; 1987 Dec; 26(26):8567-71. PubMed ID: 2964867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins.
    Gerdemann C; Eicken C; Krebs B
    Acc Chem Res; 2002 Mar; 35(3):183-91. PubMed ID: 11900522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation by mushroom tyrosinase of monophenols generating slightly unstable o-quinones.
    Fenoll LG; Rodríguez-López JN; García-Sevilla F; Tudela J; García-Ruiz PA; Varón R; García-Cánovas F
    Eur J Biochem; 2000 Oct; 267(19):5865-78. PubMed ID: 10998046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate share in the suicide inactivation of mushroom tyrosinase.
    Haghbeen K; Saboury AA; Karbassi F
    Biochim Biophys Acta; 2004 Nov; 1675(1-3):139-46. PubMed ID: 15535977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.