BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8617747)

  • 1. Partial G protein activation by fluorescent guanine nucleotide analogs. Evidence for a triphosphate-bound but inactive state.
    Remmers AE; Neubig RR
    J Biol Chem; 1996 Mar; 271(9):4791-7. PubMed ID: 8617747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent guanine nucleotide analogs and G protein activation.
    Remmers AE; Posner R; Neubig RR
    J Biol Chem; 1994 May; 269(19):13771-8. PubMed ID: 8188654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of guanine nucleotide binding and exchange kinetics of the Escherichia coli GTPase Era.
    Sullivan SM; Mishra R; Neubig RR; Maddock JR
    J Bacteriol; 2000 Jun; 182(12):3460-6. PubMed ID: 10852878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the interaction between RhoGDI and Cdc42Hs using fluorescence spectroscopy.
    Nomanbhoy TK; Cerione R
    J Biol Chem; 1996 Apr; 271(17):10004-9. PubMed ID: 8626553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and quantitation of heterotrimeric G proteins by fluorescence resonance energy transfer.
    Remmers AE
    Anal Biochem; 1998 Mar; 257(1):89-94. PubMed ID: 9512777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2'(3')-O-(N-methylanthraniloyl)-substituted GTP analogs: a novel class of potent competitive adenylyl cyclase inhibitors.
    Gille A; Seifert R
    J Biol Chem; 2003 Apr; 278(15):12672-9. PubMed ID: 12566433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characteristics of the nucleotide-binding site of Escherichia coli primary replicative helicase DnaB protein. Studies with ribose and base-modified fluorescent nucleotide analogs.
    Bujalowski W; Klonowska MM
    Biochemistry; 1994 Apr; 33(15):4682-94. PubMed ID: 8161526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using fluorescence spectroscopy.
    Leonard DA; Evans T; Hart M; Cerione RA; Manor D
    Biochemistry; 1994 Oct; 33(40):12323-8. PubMed ID: 7918454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides.
    Pisareva VP; Pisarev AV; Hellen CU; Rodnina MV; Pestova TV
    J Biol Chem; 2006 Dec; 281(52):40224-35. PubMed ID: 17062564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MANT-substituted guanine nucleotides: a novel class of potent adenylyl cyclase inhibitors.
    Gille A; Seifert R
    Life Sci; 2003 Dec; 74(2-3):271-9. PubMed ID: 14607255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Caulobacter crescentus CgtA protein displays unusual guanine nucleotide binding and exchange properties.
    Lin B; Covalle KL; Maddock JR
    J Bacteriol; 1999 Sep; 181(18):5825-32. PubMed ID: 10482526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of Escherichia coli primary replicative helicase DnaB protein with nucleotide cofactors.
    Jezewska MJ; Kim US; Bujalowski W
    Biophys J; 1996 Oct; 71(4):2075-86. PubMed ID: 8889182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2 '(3')-O-(N-Methylanthraniloyl)-guanosine 5 '-triphosphate.
    Mou TC; Gille A; Fancy DA; Seifert R; Sprang SR
    J Biol Chem; 2005 Feb; 280(8):7253-61. PubMed ID: 15591060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time NMR study of three small GTPases reveals that fluorescent 2'(3')-O-(N-methylanthraniloyl)-tagged nucleotides alter hydrolysis and exchange kinetics.
    Mazhab-Jafari MT; Marshall CB; Smith M; Gasmi-Seabrook GM; Stambolic V; Rottapel R; Neel BG; Ikura M
    J Biol Chem; 2010 Feb; 285(8):5132-6. PubMed ID: 20018863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative cooperativity in the binding of nucleotides to Escherichia coli replicative helicase DnaB protein. Interactions with fluorescent nucleotide analogs.
    Bujalowski W; Klonowska MM
    Biochemistry; 1993 Jun; 32(22):5888-900. PubMed ID: 8504109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptor-stimulated guanine-nucleotide-triphosphate binding to guanine-nucleotide-binding regulatory proteins. Nucleotide exchange and beta-subunit-mediated phosphotransfer reactions.
    Kaldenberg-Stasch S; Baden M; Fesseler B; Jakobs KH; Wieland T
    Eur J Biochem; 1994 Apr; 221(1):25-33. PubMed ID: 8168513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of G(o)alpha tryptophans in GTP hydrolysis, GDP release, and fluorescence signals.
    Lan KL; Remmers AE; Neubig RR
    Biochemistry; 1998 Jan; 37(3):837-43. PubMed ID: 9454573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides.
    Gille A; Lushington GH; Mou TC; Doughty MB; Johnson RA; Seifert R
    J Biol Chem; 2004 May; 279(19):19955-69. PubMed ID: 14981084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence.
    Nomanbhoy TK; Leonard DA; Manor D; Cerione RA
    Biochemistry; 1996 Apr; 35(14):4602-8. PubMed ID: 8605211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a fluorescence spectroscopic readout to characterize the interactions of Cdc42Hs with its target/effector, mPAK-3.
    Leonard DA; Satoskar RS; Wu WJ; Bagrodia S; Cerione RA; Manor D
    Biochemistry; 1997 Feb; 36(5):1173-80. PubMed ID: 9033409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.