BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 8617780)

  • 1. Regulation of both glycogen synthase and PHAS-I by insulin in rat skeletal muscle involves mitogen-activated protein kinase-independent and rapamycin-sensitive pathways.
    Azpiazu I; Saltiel AR; DePaoli-Roach AA; Lawrence JC
    J Biol Chem; 1996 Mar; 271(9):5033-9. PubMed ID: 8617780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The insulin centennial-100 years of milestones in biochemistry.
    Attie AD; Tang QQ; Bornfeldt KE
    J Biol Chem; 2021 Nov; 297(5):101278. PubMed ID: 34717954
    [No Abstract]   [Full Text] [Related]  

  • 3. The insulin centennial-100 years of milestones in biochemistry.
    Attie AD; Tang QQ; Bornfeldt KE
    J Lipid Res; 2021; 62():100132. PubMed ID: 34717951
    [No Abstract]   [Full Text] [Related]  

  • 4. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy.
    Tian T; Li X; Zhang J
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30754640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTOR Cross-Talk in Cancer and Potential for Combination Therapy.
    Conciatori F; Ciuffreda L; Bazzichetto C; Falcone I; Pilotto S; Bria E; Cognetti F; Milella M
    Cancers (Basel); 2018 Jan; 10(1):. PubMed ID: 29351204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic crosstalk: molecular links between glycogen and lipid metabolism in obesity.
    Lu B; Bridges D; Yang Y; Fisher K; Cheng A; Chang L; Meng ZX; Lin JD; Downes M; Yu RT; Liddle C; Evans RM; Saltiel AR
    Diabetes; 2014 Sep; 63(9):2935-48. PubMed ID: 24722244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PI3K-AKT-mTOR-signaling and beyond: the complex network in gastroenteropancreatic neuroendocrine neoplasms.
    Briest F; Grabowski P
    Theranostics; 2014; 4(4):336-65. PubMed ID: 24578720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The complexes of mammalian target of rapamycin.
    Zhou H; Huang S
    Curr Protein Pept Sci; 2010 Sep; 11(6):409-24. PubMed ID: 20491627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The growing role of mTOR in neuronal development and plasticity.
    Jaworski J; Sheng M
    Mol Neurobiol; 2006 Dec; 34(3):205-19. PubMed ID: 17308353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of the mTOR inhibitor sirolimus on the proliferation and function of pancreatic islets and ductal cells.
    Bussiere CT; Lakey JR; Shapiro AM; Korbutt GS
    Diabetologia; 2006 Oct; 49(10):2341-9. PubMed ID: 16896936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression profiling of mice with genetically modified muscle glycogen content.
    Parker GE; Pederson BA; Obayashi M; Schroeder JM; Harris RA; Roach PJ
    Biochem J; 2006 Apr; 395(1):137-45. PubMed ID: 16356168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling by target of rapamycin proteins in cell growth control.
    Inoki K; Ouyang H; Li Y; Guan KL
    Microbiol Mol Biol Rev; 2005 Mar; 69(1):79-100. PubMed ID: 15755954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal cardiac development in the absence of heart glycogen.
    Pederson BA; Chen H; Schroeder JM; Shou W; DePaoli-Roach AA; Roach PJ
    Mol Cell Biol; 2004 Aug; 24(16):7179-87. PubMed ID: 15282316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin.
    Huffman TA; Mothe-Satney I; Lawrence JC
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):1047-52. PubMed ID: 11792863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin control of glycogen metabolism in knockout mice lacking the muscle-specific protein phosphatase PP1G/RGL.
    Suzuki Y; Lanner C; Kim JH; Vilardo PG; Zhang H; Yang J; Cooper LD; Steele M; Kennedy A; Bock CB; Scrimgeour A; Lawrence JC; DePaoli-Roach AA
    Mol Cell Biol; 2001 Apr; 21(8):2683-94. PubMed ID: 11283248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reciprocal regulation of glycogen phosphorylase and glycogen synthase by insulin involving phosphatidylinositol-3 kinase and protein phosphatase-1 in HepG2 cells.
    Syed NA; Khandelwal RL
    Mol Cell Biochem; 2000 Aug; 211(1-2):123-36. PubMed ID: 11055555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of bis(maltolato) oxovanadium (IV) on protein serine kinases in skeletal muscle of streptozotocin-diabetic rats.
    Bhanot S; Girn J; Poucheret P; McNeill JH
    Mol Cell Biochem; 1999 Dec; 202(1-2):131-40. PubMed ID: 10706003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation.
    Navé BT; Ouwens M; Withers DJ; Alessi DR; Shepherd PR
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):427-31. PubMed ID: 10567225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin-stimulated kinase from rat fat cells that phosphorylates initiation factor 4E-binding protein 1 on the rapamycin-insensitive site (serine-111).
    Heesom KJ; Avison MB; Diggle TA; Denton RM
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):39-48. PubMed ID: 9806882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock.
    He B; Meng YH; Mivechi NF
    Mol Cell Biol; 1998 Nov; 18(11):6624-33. PubMed ID: 9774677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.