BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8617791)

  • 1. Roles of active site residues and the NH2-terminal domain in the catalysis and substrate binding of human Cdc25.
    Xu X; Burke SP
    J Biol Chem; 1996 Mar; 271(9):5118-24. PubMed ID: 8617791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of an essential acidic residue in Cdc25 protein phosphatase and a general three-dimensional model for a core region in protein phosphatases.
    Eckstein JW; Beer-Romero P; Berdo I
    Protein Sci; 1996 Jan; 5(1):5-12. PubMed ID: 8771191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two CDC25 homologues are differentially expressed during mouse development.
    Wickramasinghe D; Becker S; Ernst MK; Resnick JL; Centanni JM; Tessarollo L; Grabel LB; Donovan PJ
    Development; 1995 Jul; 121(7):2047-56. PubMed ID: 7635051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle.
    Reynolds RA; Yem AW; Wolfe CL; Deibel MR; Chidester CG; Watenpaugh KD
    J Mol Biol; 1999 Oct; 293(3):559-68. PubMed ID: 10543950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-specific Cdc25B phosphatase: in search of the catalytic acid.
    Chen W; Wilborn M; Rudolph J
    Biochemistry; 2000 Sep; 39(35):10781-9. PubMed ID: 10978163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis.
    Kim SH; Li C; Maller JL
    Dev Biol; 1999 Aug; 212(2):381-91. PubMed ID: 10433828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of a soluble cyclin B/cdc2 substrate for cdc25 phosphatase.
    Clark JM; Gabrielli BG
    Anal Biochem; 1997 Dec; 254(2):231-5. PubMed ID: 9417782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of natural and artificial substrates for human Cdc25A.
    Rudolph J; Epstein DM; Parker L; Eckstein J
    Anal Biochem; 2001 Feb; 289(1):43-51. PubMed ID: 11161293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C-terminal tail of the dual-specificity Cdc25B phosphatase mediates modular substrate recognition.
    Wilborn M; Free S; Ban A; Rudolph J
    Biochemistry; 2001 Nov; 40(47):14200-6. PubMed ID: 11714273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 14-3-3 proteins associate with cdc25 phosphatases.
    Conklin DS; Galaktionov K; Beach D
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7892-6. PubMed ID: 7644510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic mechanism of Cdc25.
    Rudolph J
    Biochemistry; 2002 Dec; 41(49):14613-23. PubMed ID: 12463761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of the catalytic domain of human cdc25B.
    Gottlin EB; Xu X; Epstein DM; Burke SP; Eckstein JW; Ballou DP; Dixon JE
    J Biol Chem; 1996 Nov; 271(44):27445-9. PubMed ID: 8910325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-specificity phosphatase Cdc25B is an unstable protein and triggers p34(cdc2)/cyclin B activation in hamster BHK21 cells arrested with hydroxyurea.
    Nishijima H; Nishitani H; Seki T; Nishimoto T
    J Cell Biol; 1997 Sep; 138(5):1105-16. PubMed ID: 9281587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity.
    Izumi T; Maller JL
    Mol Biol Cell; 1995 Feb; 6(2):215-26. PubMed ID: 7787247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperphosphorylation of the N-terminal domain of Cdc25 regulates activity toward cyclin B1/Cdc2 but not cyclin A/Cdk2.
    Gabrielli BG; Clark JM; McCormack AK; Ellem KA
    J Biol Chem; 1997 Nov; 272(45):28607-14. PubMed ID: 9353326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the P box, a domain in cyclin B required for the activation of Cdc25.
    Zheng XF; Ruderman JV
    Cell; 1993 Oct; 75(1):155-64. PubMed ID: 8402895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts.
    Kumagai A; Dunphy WG
    Science; 1996 Sep; 273(5280):1377-80. PubMed ID: 8703070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25.
    Kumagai A; Dunphy WG
    Genes Dev; 1999 May; 13(9):1067-72. PubMed ID: 10323858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells.
    Sandhu C; Donovan J; Bhattacharya N; Stampfer M; Worland P; Slingerland J
    Oncogene; 2000 Nov; 19(47):5314-23. PubMed ID: 11103932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.