BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8617813)

  • 1. Occurrence of transient multimeric species during the refolding of a monomeric protein.
    Pecorari F; Minard P; Desmadril M; Yon JM
    J Biol Chem; 1996 Mar; 271(9):5270-6. PubMed ID: 8617813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of strange kinetics in protein folding.
    Sabelko J; Ervin J; Gruebele M
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6031-6. PubMed ID: 10339536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains.
    Missiakas D; Betton JM; Chaffotte A; Minard P; Yon JM
    Protein Sci; 1992 Nov; 1(11):1485-93. PubMed ID: 1303767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The slow-refolding step of phosphoglycerate kinase as monitored by pulse proteolysis.
    Betton JM; Missiakas D; Yon JM
    Arch Biochem Biophys; 1992 Jul; 296(1):95-101. PubMed ID: 1605649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refolding kinetics of pig muscle and yeast 3-phosphoglycerate kinases and of their proteolytic fragments.
    Semisotnov GV; Vas M; Chemeris VV; Kashparova NJ; Kotova NV; Razgulyaev OI; Sinev MA
    Eur J Biochem; 1991 Dec; 202(3):1083-9. PubMed ID: 1765069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of loops in the folding and stability of yeast phosphoglycerate kinase.
    Collinet B; Garcia P; Minard P; Desmadril M
    Eur J Biochem; 2001 Oct; 268(19):5107-18. PubMed ID: 11589702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility and folding of phosphoglycerate kinase.
    Yon JM; Desmadril M; Betton JM; Minard P; Ballery N; Missiakas D; Gaillard-Miran S; Perahia D; Mouawad L
    Biochimie; 1990; 72(6-7):417-29. PubMed ID: 2124145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an intermediate in the folding pathway of phosphoglycerate kinase: chemical reactivity of genetically introduced cysteinyl residues during the folding process.
    Ballery N; Desmadril M; Minard P; Yon JM
    Biochemistry; 1993 Jan; 32(2):708-14. PubMed ID: 8422377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unfolding-refolding of the domains in yeast phosphoglycerate kinase: comparison with the isolated engineered domains.
    Missiakas D; Betton JM; Minard P; Yon JM
    Biochemistry; 1990 Sep; 29(37):8683-9. PubMed ID: 2271549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the R65Q mutant of yeast 3-phosphoglycerate kinase complexed with Mg-AMP-PNP and 3-phospho-D-glycerate.
    McPhillips TM; Hsu BT; Sherman MA; Mas MT; Rees DC
    Biochemistry; 1996 Apr; 35(13):4118-27. PubMed ID: 8672447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic intermediate in the folding of human prion protein.
    Apetri AC; Surewicz WK
    J Biol Chem; 2002 Nov; 277(47):44589-92. PubMed ID: 12356762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of dynamic light scattering to studies of protein folding kinetics.
    Gast K; Damaschun G; Misselwitz R; Zirwer D
    Eur Biophys J; 1992; 21(5):357-62. PubMed ID: 1483411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric effect of domain interactions on the kinetics of folding in yeast phosphoglycerate kinase.
    Osváth S; Köhler G; Závodszky P; Fidy J
    Protein Sci; 2005 Jun; 14(6):1609-16. PubMed ID: 15883189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding and functional complementation of engineered fragments from yeast phosphoglycerate kinase.
    Pecorari F; Guilbert C; Minard P; Desmadril M; Yon JM
    Biochemistry; 1996 Mar; 35(11):3465-76. PubMed ID: 8639497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and functional complementation of engineered fragments from yeast phosphoglycerate kinase.
    Pecorari F; Minard P; Desmadril M; Yon JM
    Protein Eng; 1993 Apr; 6(3):313-25. PubMed ID: 8506266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refolding and oxidation of recombinant human stem cell factor produced in Escherichia coli.
    Jones MD; Narhi LO; Chang WC; Lu HS
    J Biol Chem; 1996 May; 271(19):11301-8. PubMed ID: 8626682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the C-terminal helix in the folding and stability of yeast phosphoglycerate kinase.
    Ritco-Vonsovici M; Mouratou B; Minard P; Desmadril M; Yon JM; Andrieux M; Leroy E; Guittet E
    Biochemistry; 1995 Jan; 34(3):833-41. PubMed ID: 7827042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain interactions direct misfolding and amyloid formation of yeast phosphoglycerate kinase.
    Osváth S; Jäckel M; Agócs G; Závodszky P; Köhler G; Fidy J
    Proteins; 2006 Mar; 62(4):909-17. PubMed ID: 16353200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold denaturation of yeast phosphoglycerate kinase: kinetics of changes in secondary structure and compactness on unfolding and refolding.
    Gast K; Damaschun G; Damaschun H; Misselwitz R; Zirwer D
    Biochemistry; 1993 Aug; 32(30):7747-52. PubMed ID: 8347583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of functional enzyme from amyloid fibrils.
    Agócs G; Solymosi K; Varga A; Módos K; Kellermayer M; Závodszky P; Fidy J; Osváth S
    FEBS Lett; 2010 Mar; 584(6):1139-42. PubMed ID: 20132817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.