These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8618164)

  • 1. Friction and stem stiffness affect dynamic interface motion in total hip replacement.
    Kuiper JH; Huiskes R
    J Orthop Res; 1996 Jan; 14(1):36-43. PubMed ID: 8618164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
    Cheal EJ; Spector M; Hayes WC
    J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cemented femoral stem performance. Effects of proximal bonding, geometry, and neck length.
    Chang PB; Mann KA; Bartel DL
    Clin Orthop Relat Res; 1998 Oct; (355):57-69. PubMed ID: 9917591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of a three-dimensional model of a proximal femur-cemented femoral THJR component construct: influence of assigned interface conditions on strain energy density.
    Lewis G; Duggineni R
    Biomed Mater Eng; 2006; 16(5):319-27. PubMed ID: 17075167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of design parameters on calcar stresses following femoral head arthroplasty.
    Cook SD; Klawitter JJ; Weinstein AM
    J Biomed Mater Res; 1980 Mar; 14(2):133-44. PubMed ID: 7358741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of shear stresses at the implant-bone interface of an acetabular press-fit cup during impingement.
    Voigt C; Klöhn C; Bader R; von Salis-Soglio G; Scholz R
    Biomed Tech (Berl); 2007 Apr; 52(2):208-15. PubMed ID: 17408381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preclinical testing of total hip stems. The effects of coating placement.
    Huiskes R; van Rietbergen B
    Clin Orthop Relat Res; 1995 Oct; (319):64-76. PubMed ID: 7554651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary stability of an anatomical cementless hip stem: a statistical analysis.
    Viceconti M; Brusi G; Pancanti A; Cristofolini L
    J Biomech; 2006; 39(7):1169-79. PubMed ID: 15927191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometric element analysis of fretting in a model of a modular femoral component of a hip implant.
    Lewis G
    Biomed Mater Eng; 2004; 14(1):43-51. PubMed ID: 14757952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Stress analysis of femoral stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer].
    Oomori H; Imura S; Gesso H
    Nihon Seikeigeka Gakkai Zasshi; 1992 Apr; 66(4):240-52. PubMed ID: 1593196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Charnley hip neck-angle inclination on the stresses at stem/cement and bone/cement interfaces.
    Zaki M; Saad F; Al-Ebiary MN
    Biomed Mater Eng; 2002; 12(4):411-21. PubMed ID: 12652035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials.
    Huiskes R; Weinans H; van Rietbergen B
    Clin Orthop Relat Res; 1992 Jan; (274):124-34. PubMed ID: 1728998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cementless implant composition and femoral stress. A finite element analysis.
    Namba RS; Keyak JH; Kim AS; Vu LP; Skinner HB
    Clin Orthop Relat Res; 1998 Feb; (347):261-7. PubMed ID: 9520899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone ingrowth simulation for a concept glenoid component design.
    Andreykiv A; Prendergast PJ; van Keulen F; Swieszkowski W; Rozing PM
    J Biomech; 2005 May; 38(5):1023-33. PubMed ID: 15797584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [FE-analysis of surface stresses for the tribological system in total hip prostheses].
    Behrens BA; Helms G; Pösse O; Nolte I; Meyer-Lindenberg A; Rittmann P; Windhagen H; Pressel T
    Biomed Tech (Berl); 2006 Dec; 51(5-6):367-70. PubMed ID: 17155874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Migration and cyclic motion of a new short-stemmed hip prosthesis--a biomechanical in vitro study.
    Westphal FM; Bishop N; Honl M; Hille E; Püschel K; Morlock MM
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):834-40. PubMed ID: 16806616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Stresses on the femur following hip joint replacement].
    Rohlmann A; Mössner U; Bergmann G; Hees G; Kölbel R
    Z Orthop Ihre Grenzgeb; 1983; 121(1):47-57. PubMed ID: 6845829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.