These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8618431)

  • 21. Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues.
    Brainard MS; Knudsen EI; Esterly SD
    J Acoust Soc Am; 1992 Feb; 91(2):1015-27. PubMed ID: 1556303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectrotemporal organization of excitatory and inhibitory receptive fields of cat posterior auditory field neurons.
    Loftus WC; Sutter ML
    J Neurophysiol; 2001 Jul; 86(1):475-91. PubMed ID: 11431526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound.
    Epping WJ; Eggermont JJ
    Hear Res; 1986; 24(1):55-72. PubMed ID: 3489703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex.
    Ghose GM; Ohzawa I; Freeman RD
    J Neurophysiol; 1994 Jan; 71(1):330-46. PubMed ID: 8158235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Signal detection in amplitude-modulated maskers. II. Processing in the songbird's auditory forebrain.
    Nieder A; Klump GM
    Eur J Neurosci; 2001 Mar; 13(5):1033-44. PubMed ID: 11264677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex.
    Miller LM; Escabí MA; Read HL; Schreiner CE
    J Neurophysiol; 2002 Jan; 87(1):516-27. PubMed ID: 11784767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auditory motion induces directionally dependent receptive field shifts in inferior colliculus neurons.
    Wilson WW; O'Neill WE
    J Neurophysiol; 1998 Apr; 79(4):2040-62. PubMed ID: 9535967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binaural processing in the synthesis of auditory spatial receptive fields.
    Peña JL
    Biol Cybern; 2003 Nov; 89(5):371-7. PubMed ID: 14669017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat.
    Kadner A; Berrebi AS
    Neuroscience; 2008 Feb; 151(3):868-87. PubMed ID: 18155850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual responses of neurons in the avian nucleus isthmi.
    Yan K; Wang SR
    Neurosci Lett; 1986 Mar; 64(3):340-4. PubMed ID: 2421216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced sound perception by widespread-onset neuronal responses in auditory cortex.
    Hoshino O
    Neural Comput; 2007 Dec; 19(12):3310-34. PubMed ID: 17970655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of midbrain and thalamic space-specific neurons in barn owls.
    Pérez ML; Peña JL
    J Neurophysiol; 2006 Feb; 95(2):783-90. PubMed ID: 16424454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How different are the local field potentials and spiking activities? Insights from multi-electrodes arrays.
    Gaucher Q; Edeline JM; Gourévitch B
    J Physiol Paris; 2012; 106(3-4):93-103. PubMed ID: 21958623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Should spikes be treated with equal weightings in the generation of spectro-temporal receptive fields?
    Chang TR; Chiu TW; Chung PC; Poon PW
    J Physiol Paris; 2010; 104(3-4):215-22. PubMed ID: 19941954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A hierarchical sparse coding model predicts acoustic feature encoding in both auditory midbrain and cortex.
    Zhang Q; Hu X; Hong B; Zhang B
    PLoS Comput Biol; 2019 Feb; 15(2):e1006766. PubMed ID: 30742609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. I. Stimulation with acoustic clicks.
    Epping WJ; Eggermont JJ
    Hear Res; 1986; 24(1):37-54. PubMed ID: 3489702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grass frog (Rana temporaria L) investigated with noise stimuli.
    Hermes DJ; Aertsen AM; Johannesma PI; Eggermont JJ
    Hear Res; 1981 Nov; 5(2-3):147-78. PubMed ID: 6975772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Postnatal development of neuronal responses to frequency-modulated tones in chinchilla auditory cortex.
    Brown TA; Harrison RV
    Brain Res; 2010 Jan; 1309():29-39. PubMed ID: 19874805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.