These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8618431)

  • 41. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.
    Liberman T; Velluti RA; Pedemonte M
    Brain Res; 2009 Nov; 1298():70-7. PubMed ID: 19716364
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Representation of spectrotemporal sound information in the ascending auditory pathway.
    Escabí MA; Read HL
    Biol Cybern; 2003 Nov; 89(5):350-62. PubMed ID: 14669015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlations between neural discharges are related to receptive field properties in cat primary auditory cortex.
    Brosch M; Schreiner CE
    Eur J Neurosci; 1999 Oct; 11(10):3517-30. PubMed ID: 10564360
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adaptive stimulus optimization for auditory cortical neurons.
    O'Connor KN; Petkov CI; Sutter ML
    J Neurophysiol; 2005 Dec; 94(6):4051-67. PubMed ID: 16135553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial organization of receptive fields in the auditory midbrain of awake mouse.
    Portfors CV; Mayko ZM; Jonson K; Cha GF; Roberts PD
    Neuroscience; 2011 Oct; 193():429-39. PubMed ID: 21807069
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Temporal characteristics of impulse activity of neurons with the V-shaped frequency receptive fields in the house mouse (Mus musculus) auditory midbrain].
    Khorunzhii GD; Egorova MA
    Zh Evol Biokhim Fiziol; 2014; 50(4):314-8. PubMed ID: 25775868
    [No Abstract]   [Full Text] [Related]  

  • 47. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.
    Wirtssohn S; Ronacher B
    J Neurophysiol; 2015 Apr; 113(7):2280-8. PubMed ID: 25609104
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.
    Franzen DL; Gleiss SA; Berger C; Kümpfbeck FS; Ammer JJ; Felmy F
    J Neurophysiol; 2015 Jan; 113(2):524-36. PubMed ID: 25355963
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grass frog (Rana temporaria L.) investigated with tonal stimuli.
    Hermes DJ; Eggermont JJ; Aertsen AM; Johannesma PI
    Hear Res; 1982 Jan; 6(1):103-26. PubMed ID: 6976343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex.
    Gourévitch B; Eggermont JJ
    J Neurophysiol; 2007 Jan; 97(1):144-58. PubMed ID: 17021022
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Affects of aging on receptive fields in rat primary auditory cortex layer V neurons.
    Turner JG; Hughes LF; Caspary DM
    J Neurophysiol; 2005 Oct; 94(4):2738-47. PubMed ID: 16000522
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Incorporating behavioral and sensory context into spectro-temporal models of auditory encoding.
    David SV
    Hear Res; 2018 Mar; 360():107-123. PubMed ID: 29331232
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of temporal cues on acoustic motion-direction sensitivity of auditory neurons in the owl.
    Wagner H; Takahashi T
    J Neurophysiol; 1992 Dec; 68(6):2063-76. PubMed ID: 1491257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex.
    Depireux DA; Simon JZ; Klein DJ; Shamma SA
    J Neurophysiol; 2001 Mar; 85(3):1220-34. PubMed ID: 11247991
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds.
    Ashida G; Kretzberg J; Tollin DJ
    PLoS Comput Biol; 2016 Jun; 12(6):e1004997. PubMed ID: 27322612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differences in responses to 70 dB clicks of cerebellar units with simple versus complex spike activity: (i) in medial and lateral ansiform lobes and flocculus; and (ii) before and after conditioning blink conditioned responses with clicks as conditioned stimuli.
    Woody CD; Nahvi A; Palermo G; Wan J; Wang XF; Gruen E
    Neuroscience; 1999; 90(4):1227-41. PubMed ID: 10338293
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multilinear models of single cell responses in the medial nucleus of the trapezoid body.
    Englitz B; Ahrens M; Tolnai S; Rübsamen R; Sahani M; Jost J
    Network; 2010; 21(1-2):91-124. PubMed ID: 20735339
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relation of binaural interaction and spectro-temporal characteristics in the auditory midbrain of the grassfrog.
    Epping WJ; Eggermont JJ
    Hear Res; 1985; 19(1):15-28. PubMed ID: 3877715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reduction of information redundancy in the ascending auditory pathway.
    Chechik G; Anderson MJ; Bar-Yosef O; Young ED; Tishby N; Nelken I
    Neuron; 2006 Aug; 51(3):359-68. PubMed ID: 16880130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Organization of inhibitory frequency receptive fields in cat primary auditory cortex.
    Sutter ML; Schreiner CE; McLean M; O'connor KN; Loftus WC
    J Neurophysiol; 1999 Nov; 82(5):2358-71. PubMed ID: 10561411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.