These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 8618880)

  • 1. The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5.
    Sarniguet A; Kraus J; Henkels MD; Muehlchen AM; Loper JE
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12255-9. PubMed ID: 8618880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities.
    Schnider U; Keel C; Blumer C; Troxler J; Défago G; Haas D
    J Bacteriol; 1995 Sep; 177(18):5387-92. PubMed ID: 7665535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0.
    Péchy-Tarr M; Bottiglieri M; Mathys S; Lejbølle KB; Schnider-Keel U; Maurhofer M; Keel C
    Mol Plant Microbe Interact; 2005 Mar; 18(3):260-72. PubMed ID: 15782640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5.
    Whistler CA; Stockwell VO; Loper JE
    Appl Environ Microbiol; 2000 Jul; 66(7):2718-25. PubMed ID: 10877760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5.
    Whistler CA; Corbell NA; Sarniguet A; Ream W; Loper JE
    J Bacteriol; 1998 Dec; 180(24):6635-41. PubMed ID: 9852008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5.
    Brodhagen M; Henkels MD; Loper JE
    Appl Environ Microbiol; 2004 Mar; 70(3):1758-66. PubMed ID: 15006802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5.
    Corbell N; Loper JE
    J Bacteriol; 1995 Nov; 177(21):6230-6. PubMed ID: 7592389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The outer membrane protein OprF and the sigma factor SigX regulate antibiotic production in Pseudomonas fluorescens 2P24.
    Li X; Gu GQ; Chen W; Gao LJ; Wu XH; Zhang LQ
    Microbiol Res; 2018 Jan; 206():159-167. PubMed ID: 29146252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5.
    Kidarsa TA; Goebel NC; Zabriskie TM; Loper JE
    Mol Microbiol; 2011 Jul; 81(2):395-414. PubMed ID: 21564338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin.
    Schnider-Keel U; Seematter A; Maurhofer M; Blumer C; Duffy B; Gigot-Bonnefoy C; Reimmann C; Notz R; Défago G; Haas D; Keel C
    J Bacteriol; 2000 Mar; 182(5):1215-25. PubMed ID: 10671440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0.
    Heeb S; Valverde C; Gigot-Bonnefoy C; Haas D
    FEMS Microbiol Lett; 2005 Feb; 243(1):251-8. PubMed ID: 15668026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sigma factor RpoS is required for stress tolerance and environmental fitness of Pseudomonas fluorescens Pf-5.
    Stockwell VO; Loper JE
    Microbiology (Reading); 2005 Sep; 151(Pt 9):3001-3009. PubMed ID: 16151210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of RpoS in stress resistance, quorum sensing and spoilage potential of Pseudomonas fluorescens.
    Liu X; Ji L; Wang X; Li J; Zhu J; Sun A
    Int J Food Microbiol; 2018 Apr; 270():31-38. PubMed ID: 29471265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies.
    Ovadis M; Liu X; Gavriel S; Ismailov Z; Chet I; Chernin L
    J Bacteriol; 2004 Aug; 186(15):4986-93. PubMed ID: 15262936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHA0: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin.
    Schnider U; Keel C; Voisard C; Défago G; Haas D
    Appl Environ Microbiol; 1995 Nov; 61(11):3856-64. PubMed ID: 8526497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of retS gene on antibiotics production in Pseudomonas fluorescens FD6.
    Zhang Q; Xiao Q; Xu J; Tong Y; Wen J; Chen X; Wei L
    Microbiol Res; 2015 Nov; 180():23-9. PubMed ID: 26505308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress tolerance and environmental fitness of Pseudomonas fluorescens A506, which has a mutation in RpoS.
    Hagen MJ; Stockwell VO; Whistler CA; Johnson KB; Loper JE
    Phytopathology; 2009 Jun; 99(6):679-88. PubMed ID: 19453226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Vfr in the regulation of antifungal compound production by Pseudomonas fluorescens FD6.
    Zhang Q; Ji Y; Xiao Q; Chng S; Tong Y; Chen X; Liu F
    Microbiol Res; 2016; 188-189():106-112. PubMed ID: 27296968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal regulation of pyoluteorin production with membrane transporter gene expression in Pseudomonas fluorescens Pf-5.
    Brodhagen M; Paulsen I; Loper JE
    Appl Environ Microbiol; 2005 Nov; 71(11):6900-9. PubMed ID: 16269724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco.
    Laville J; Voisard C; Keel C; Maurhofer M; Défago G; Haas D
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1562-6. PubMed ID: 1311842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.