BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 8619020)

  • 1. Role of guanosine triphosphate in ferric ion-linked Fenton chemistry.
    Biaglow JE; Held KD; Manevich Y; Tuttle S; Kachur A; Uckun F
    Radiat Res; 1996 May; 145(5):554-62. PubMed ID: 8619020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation.
    Manevich Y; Held KD; Biaglow JE
    Radiat Res; 1997 Dec; 148(6):580-91. PubMed ID: 9399704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of purine nucleoside phosphates on OH-radical generation by reaction of Fe2+ with oxygen.
    Kachur AV; Manevich Y; Biaglow JE
    Free Radic Res; 1997 May; 26(5):399-408. PubMed ID: 9179585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of *OH initiated by interaction of Fe2+ and Cu+ with dioxygen; comparison with the Fenton chemistry.
    Urbański NK; Beresewicz A
    Acta Biochim Pol; 2000; 47(4):951-62. PubMed ID: 11996118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method.
    Bektaşoğlu B; Esin Celik S; Ozyürek M; Güçlü K; Apak R
    Biochem Biophys Res Commun; 2006 Jul; 345(3):1194-200. PubMed ID: 16716257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of production of hydroxyl radicals in the copper-catalyzed oxidation of dithiothreitol.
    Kachur AV; Held KD; Koch CJ; Biaglow JE
    Radiat Res; 1997 Apr; 147(4):409-15. PubMed ID: 9092919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The generation of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate complexes of ferrous ion.
    Biaglow JE; Kachur AV
    Radiat Res; 1997 Aug; 148(2):181-7. PubMed ID: 9254738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant properties of S-adenosyl-L-methionine in Fe(2+)-initiated oxidations.
    Caro AA; Cederbaum AI
    Free Radic Biol Med; 2004 May; 36(10):1303-16. PubMed ID: 15110395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct demonstration that ferrous ion complexes of di- and triphosphate nucleotides catalyze hydroxyl free radical formation from hydrogen peroxide.
    Floyd RA
    Arch Biochem Biophys; 1983 Aug; 225(1):263-70. PubMed ID: 6311103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential DNA strand breaking abilities of *OH and ROS generating radiomimetic chemicals and gamma-rays: study of plasmid DNA, pMTa4, in vitro.
    Meriyani Odyuo M; Sharan RN
    Free Radic Res; 2005 May; 39(5):499-505. PubMed ID: 16036325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyl radical scavenging activity of a new ophthalmic viscosurgical device.
    Maugeri F; Maltese A; Ward KW; Bucolo C
    Curr Eye Res; 2007 Feb; 32(2):105-11. PubMed ID: 17364743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of BPA degradation by serum as a hydroxyl radical scavenger and an Fe trapping agent in Fenton process.
    Sajiki J; Masumizu T
    Chemosphere; 2004 Oct; 57(4):241-52. PubMed ID: 15312722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of buffers and chelators on the reaction of luminol with Fenton's reagent near neutral pH.
    Bottu G
    J Biolumin Chemilumin; 1991; 6(3):147-51. PubMed ID: 1660669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals,
    Flowers L; Ohnishi ST; Penning TM
    Biochemistry; 1997 Jul; 36(28):8640-8. PubMed ID: 9214311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excimer laser-induced hydroxyl radical formation and keratocyte death in vitro.
    Shimmura S; Masumizu T; Nakai Y; Urayama K; Shimazaki J; Bissen-Miyajima H; Kohno M; Tsubota K
    Invest Ophthalmol Vis Sci; 1999 May; 40(6):1245-9. PubMed ID: 10235559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide: A metal-independent organic Fenton reaction.
    Zhu BZ; Kitrossky N; Chevion M
    Biochem Biophys Res Commun; 2000 Apr; 270(3):942-6. PubMed ID: 10772930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction.
    Ali MA; Yasui F; Matsugo S; Konishi T
    Free Radic Res; 2000 May; 32(5):429-38. PubMed ID: 10766411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.