BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 8619379)

  • 1. Cranial sutures require tissue interactions with dura mater to resist osseous obliteration in vitro.
    Opperman LA; Passarelli RW; Morgan EP; Reintjes M; Ogle RC
    J Bone Miner Res; 1995 Dec; 10(12):1978-87. PubMed ID: 8619379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue interactions with underlying dura mater inhibit osseous obliteration of developing cranial sutures.
    Opperman LA; Sweeney TM; Redmon J; Persing JA; Ogle RC
    Dev Dyn; 1993 Dec; 198(4):312-22. PubMed ID: 8130378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cranial suture obliteration is induced by removal of transforming growth factor (TGF)-beta 3 activity and prevented by removal of TGF-beta 2 activity from fetal rat calvaria in vitro.
    Opperman LA; Chhabra A; Cho RW; Ogle RC
    J Craniofac Genet Dev Biol; 1999; 19(3):164-73. PubMed ID: 10589398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of cranial suture morphogenesis.
    Ogle RC; Tholpady SS; McGlynn KA; Ogle RA
    Cells Tissues Organs; 2004; 176(1-3):54-66. PubMed ID: 14745235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-beta 2 and TGF-beta 3 regulate fetal rat cranial suture morphogenesis by regulating rates of cell proliferation and apoptosis.
    Opperman LA; Adab K; Gakunga PT
    Dev Dyn; 2000 Oct; 219(2):237-47. PubMed ID: 11002343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGF-beta 1, TGF-beta 2, and TGF-beta 3 exhibit distinct patterns of expression during cranial suture formation and obliteration in vivo and in vitro.
    Opperman LA; Nolen AA; Ogle RC
    J Bone Miner Res; 1997 Mar; 12(3):301-10. PubMed ID: 9076572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dura mater maintains rat cranial sutures in vitro by regulating suture cell proliferation and collagen production.
    Opperman LA; Chhabra A; Nolen AA; Bao Y; Ogle RC
    J Craniofac Genet Dev Biol; 1998; 18(3):150-8. PubMed ID: 9785219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nasal capsular cartilage is required for rat transpalatal suture morphogenesis.
    Adab K; Sayne JR; Carlson DS; Opperman LA
    Differentiation; 2003 Oct; 71(8):496-505. PubMed ID: 14641330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cranial sutures as intramembranous bone growth sites.
    Opperman LA
    Dev Dyn; 2000 Dec; 219(4):472-85. PubMed ID: 11084647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies in cranial suture biology: in vitro cranial suture fusion.
    Bradley JP; Levine JP; Blewett C; Krummel T; McCarthy JG; Longaker MT
    Cleft Palate Craniofac J; 1996 Mar; 33(2):150-6. PubMed ID: 8695623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular dynamics and tissue interactions of the dura mater during head development.
    Gagan JR; Tholpady SS; Ogle RC
    Birth Defects Res C Embryo Today; 2007 Dec; 81(4):297-304. PubMed ID: 18228258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing of Egf treatment differentially affects Tgf-beta2 induced cranial suture closure.
    Rawlins JT; Fernandez CR; Cozby ME; Opperman LA
    Exp Biol Med (Maywood); 2008 Dec; 233(12):1518-26. PubMed ID: 18849541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies in cranial suture biology: Part I. Increased immunoreactivity for TGF-beta isoforms (beta 1, beta 2, and beta 3) during rat cranial suture fusion.
    Roth DA; Longaker MT; McCarthy JG; Rosen DM; McMullen HF; Levine JP; Sung J; Gold LI
    J Bone Miner Res; 1997 Mar; 12(3):311-21. PubMed ID: 9076573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development.
    Kim HJ; Rice DP; Kettunen PJ; Thesleff I
    Development; 1998 Apr; 125(7):1241-51. PubMed ID: 9477322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblastic and osteoclastic activation in coronal sutures undergoing fusion ex vivo.
    Winograd JM; Im MJ; Vander Kolk CA
    Plast Reconstr Surg; 1997 Oct; 100(5):1103-12. PubMed ID: 9326770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In the absence of periosteum, transplanted fetal and neonatal rat coronal sutures resist osseous obliteration.
    Opperman LA; Persing JA; Sheen R; Ogle RC
    J Craniofac Surg; 1994 Nov; 5(5):327-32. PubMed ID: 7833415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-induced rat coronal suture fusion in vitro: the role of redox regulation.
    Im MJ; Winograd JM; Manson PN; Vander Kolk CA
    J Craniofac Surg; 1997 Jul; 8(4):262-9. PubMed ID: 9482049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies in cranial suture biology: regional dura mater determines overlying suture biology.
    Levine JP; Bradley JP; Roth DA; McCarthy JG; Longaker MT
    Plast Reconstr Surg; 1998 May; 101(6):1441-7. PubMed ID: 9583471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of coronal suture synostosis using suture and dura mater allografts in rabbits with familial craniosynostosis.
    Mooney MP; Burrows AM; Smith TD; Losken HW; Opperman LA; Dechant J; Kreithen AM; Kapucu R; Cooper GM; Ogle RC; Siegel MI
    Cleft Palate Craniofac J; 2001 May; 38(3):206-25. PubMed ID: 11386428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TGF-beta2 stimulates cranial suture closure through activation of the Erk-MAPK pathway.
    Lee SW; Choi KY; Cho JY; Jung SH; Song KB; Park EK; Choi JY; Shin HI; Kim SY; Woo KM; Baek JH; Nam SH; Kim YJ; Kim HJ; Ryoo HM
    J Cell Biochem; 2006 Jul; 98(4):981-91. PubMed ID: 16795080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.