BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8619641)

  • 21. Kinetics of inactivation of Penaeus penicillatus acid phosphatase during inhibition by N-bromosuccinimide.
    Yang PZ; Chen QX; Li Y; Chen SL; Zhou HM
    Biochem Mol Biol Int; 1998 Aug; 45(5):953-62. PubMed ID: 9739460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tryptophan residues in alpha-galactosidase from Trichoderma reesei.
    Kachurin AM; Protasenya SV; Shabalin KA; Isaev-Ivanov VV; Golubev AM; Neustroev KN
    Biochemistry (Mosc); 1998 Oct; 63(10):1183-90. PubMed ID: 9864453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An essential tryptophan residue for rabbit muscle creatine kinase.
    Zhou HM; Tsou CL
    Biochim Biophys Acta; 1985 Jul; 830(1):59-63. PubMed ID: 4016129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stopped-flow studies on the chemical modification with N-bromosuccinimide of model compounds of tryptophan residues.
    Ohnishi M; Kawagishi T; Abe T; Hiromi K
    J Biochem; 1980 Jan; 87(1):273-9. PubMed ID: 7358635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Creatine kinase compactness and thiol accessibility during sodium dodecyl sulfate denaturation estimated by resonance energy transfer and 2-nitro-5-thiocyanobenzoic acid cleavage.
    Clottes E; Couthon F; Denoroy L; Vial C
    Biochim Biophys Acta; 1994 Dec; 1209(2):171-6. PubMed ID: 7811687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical modification and inactivation of rat liver arginase by N-bromosuccinimide: reaction with His141.
    Daghigh F; Cavalli RC; Soprano DR; Ash DE
    Arch Biochem Biophys; 1996 Mar; 327(1):107-12. PubMed ID: 8615679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Assignment of a component of protein fluorescence spectra to tryptophan residues by their three-dimensional microoenvironmental properties].
    Reshetniak IaK; Burshteĭn EA
    Biofizika; 1997; 42(2):293-300. PubMed ID: 9172673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical modification of histidine, tyrosine, tryptophan and cysteine residues in carp (Cyprinus carpio) muscle enolase.
    Pietkiewicz J; Kustrzeba-Wójcicka I; Wolna E; Wolny M
    Biochem Int; 1987 May; 14(5):805-14. PubMed ID: 3454643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The chemical modification of the essential groups of beta-N-acetyl-D-glucosaminidase from Turbo cornutus Solander.
    Lin JC; Chen QX; Shi Y; Li SW; Zhao H
    IUBMB Life; 2003 Sep; 55(9):547-52. PubMed ID: 14658761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical modification of alpha-subunit tryptophan residues in Schizosaccharomyces pombe mitochondrial F1 adenosine 5'-triphosphatase: differential reactivity and role in activity.
    Divita G; Jault JM; Gautheron DC; Di Pietro A
    Biochemistry; 1993 Feb; 32(4):1017-24. PubMed ID: 8424930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic fluorescence reports a global conformational change in the N-lobe of human serum transferrin following iron release.
    James NG; Berger CL; Byrne SL; Smith VC; MacGillivray RT; Mason AB
    Biochemistry; 2007 Sep; 46(37):10603-11. PubMed ID: 17711300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two tryptophans at the active site of UDP-glucose 4-epimerase from Kluyveromyces fragilis.
    Ray S; Mukherji S; Bhaduri A
    J Biol Chem; 1995 May; 270(19):11383-90. PubMed ID: 7744774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural changes in the protease domain of prothrombin upon activation as assessed by N-bromosuccinimide modification of tryptophan residues in prethrombin-2 and thrombin.
    Stevens WK; Nesheim ME
    Biochemistry; 1993 Mar; 32(11):2787-94. PubMed ID: 8457546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational changes of maize and wheat NADP-malic enzyme studied by quenching of protein native fluorescence.
    Spampinato CP; Ferreyra ML; Andreo CS
    Int J Biol Macromol; 2007 Jun; 41(1):64-71. PubMed ID: 17292466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free radical-induced inactivation of creatine kinase: influence on the octameric and dimeric states of the mitochondrial enzyme (Mib-CK).
    Koufen P; Rück A; Brdiczka D; Wendt S; Wallimann T; Stark G
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):413-7. PubMed ID: 10567223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Affinity modification of creatine kinase from rabbit skeletal muscles using gamma-(p-azidoanilide)-ATP].
    Akopian ZhI; Gazariants MG; Mkrtchian ES; Nersova LS; Lavrik OI
    Biokhimiia; 1981 Feb; 46(2):262-8. PubMed ID: 7018594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An essential tryptophan residue of green crab (syclla serrata) alkaline phosphatase.
    Zheng WZ; Chen QX; Zhao H; Zhang Z; Zhang W; Zhou HM
    Biochem Mol Biol Int; 1997 Apr; 41(5):951-9. PubMed ID: 9137826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformational heterogeneity of creatine kinase determined from phase resolved fluorometry.
    Grossman SH
    Biophys J; 1991 Mar; 59(3):590-7. PubMed ID: 2049520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.