BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8619641)

  • 41. Reactivity of 3-HBA-6-hydroxylase with diethylpyrocarbonate and N-bromosuccinimide: effect of chemical modifications on kinetic and spectral properties of the enzyme.
    Sumathi S; Dasgupta D
    Biotechnol Prog; 2000; 16(4):577-82. PubMed ID: 10933831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure-function relationship of xylanase: fluorimetric analysis of the tryptophan environment.
    Bandivadekar KR; Deshpande VV
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):583-7. PubMed ID: 8615833
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tryptophan residues of creatine kinase: a fluorescence study.
    Messmer CH; Kägi JH
    Biochemistry; 1985 Dec; 24(25):7172-8. PubMed ID: 4084573
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Despite its high similarity with monomeric arginine kinase, muscle creatine kinase is only enzymatically active as a dimer.
    Awama AM; Mazon H; Vial C; Marcillat O
    Arch Biochem Biophys; 2007 Feb; 458(2):158-66. PubMed ID: 17239811
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ligand-induced conformational changes in lactose repressor: a fluorescence study of single tryptophan mutants.
    Barry JK; Matthews KS
    Biochemistry; 1997 Dec; 36(50):15632-42. PubMed ID: 9398291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of resonance energy homotransfer on the intrinsic tryptophan fluorescence emission of the bothropstoxin-I dimer.
    de Oliveira AH; Giglio JR; Andrião-Escarso SH; Ward RJ
    Biochem Biophys Res Commun; 2001 Jun; 284(4):1011-5. PubMed ID: 11409896
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [What determines the characteristics of the intrinsic UV-fluorescence of proteins? Analysis of the properties of the microenvironment and features of the localization of their tryptophan residues].
    Kuznetsova IM; Turoverov KK
    Tsitologiia; 1998; 40(8-9):747-62. PubMed ID: 9821245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-dimensional fluorescence correlation spectroscopy IV: resolution of fluorescence of tryptophan residues in alcohol dehydrogenase and lysozyme.
    Fukuma H; Nakashima K; Ozaki Y; Noda I
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):517-22. PubMed ID: 16520086
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modification and modificatory kinetics of the active center of prawn beta-N-acetyl-D-glucosaminidase.
    Xie XL; Huang QS; Wang Y; Ke CH; Chen QX
    J Biomol Struct Dyn; 2009 Jun; 26(6):781-6. PubMed ID: 19385706
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Exposure of cooperativity of the active sites of rabbit skeletal muscle creatine kinase during its interaction with gamma-amides of ATP].
    Gorshkova II; Lavrik OI; Popov RA
    Biokhimiia; 1981 Sep; 46(9):1564-9. PubMed ID: 7295820
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of tryptophan in the spectral and catalytic properties of the copper enzyme, galactose oxidase.
    Kosman DJ; Ettinger MJ; Bereman RD; Giordano RS
    Biochemistry; 1977 Apr; 16(8):1597-601. PubMed ID: 192267
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Effect of lactate and glycolytic intermediates on muscle creatine kinase].
    Chetverikova EP; Rozanova NA
    Biokhimiia; 1980 May; 45(5):845-53. PubMed ID: 7378505
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Changes in biological properties of botulinum neurotoxin a induced by chemical modification of its molecule by tryptophan and tyrosine].
    Shibaeva IV; Kolesnikova VA; Ivanov KK
    Biokhimiia; 1981 May; 46(5):825-31. PubMed ID: 6794652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The role of tryptophan residues in the antigenic activity of carcinoembryonic antigen].
    Glazunov VP; Vakorina TI; Odinokov SE; Kurika AV; Pavlenko AF
    Bioorg Khim; 1988 Sep; 14(9):1166-70. PubMed ID: 2464348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GTP binding to elongation factor eEF-2 unmasks a tryptophan residue required for biological activity.
    Guillot D; Penin F; Di Pietro A; Sontag B; Lavergne JP; Reboud JP
    J Biol Chem; 1993 Oct; 268(28):20911-6. PubMed ID: 8407925
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modification of bovine alpha-lactalbumin with N-bromosuccinimide and 2-hydroxy-5-nitrobenzylbromide.
    Bell JE; Castellino FJ; Trayer IP; Hill RL
    J Biol Chem; 1975 Oct; 250(19):7579-85. PubMed ID: 809437
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescence analysis of denaturation and reassembly of dansylated creatine kinase.
    Grossman SH
    Biochim Biophys Acta; 1984 Feb; 785(1-2):61-7. PubMed ID: 6696921
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence properties of the copper enzyme galactose oxidase and its tryptophan-modified derivatives.
    Weiner RE; Ettinger MJ; Kosman DJ
    Biochemistry; 1977 Apr; 16(8):1602-6. PubMed ID: 557987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Analysis of the structure and function of creatine kinase active sites using affinity modification].
    Lavrik OI; Nevinskiĭ GA
    Bioorg Khim; 1987 Jul; 13(7):869-93. PubMed ID: 3314872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Structural-functional non-identity of subunits of creatine kinase from rabbit skeletal muscle].
    Nevinskiĭ GA; Ankilova VN; Lavrik OI; Mkrtchian ZS; Nersesova LS
    Biokhimiia; 1983; 48(2):339-49. PubMed ID: 6838931
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.