These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 8619791)
1. Glu-416 of beta-galactosidase (Escherichia coli) is a Mg2+ ligand and beta-galactosidases with substitutions for Glu-416 are inactivated, rather than activated, by MG2+. Roth NJ; Huber RE Biochem Biophys Res Commun; 1996 Feb; 219(1):111-5. PubMed ID: 8619791 [TBL] [Abstract][Full Text] [Related]
2. Site directed substitutions suggest that His-418 of beta-galactosidase (E. coli) is a ligand to Mg2+. Roth NJ; Huber RE Biochem Biophys Res Commun; 1994 Jun; 201(2):866-70. PubMed ID: 8003024 [TBL] [Abstract][Full Text] [Related]
3. Beta-galactosidase (Escherichia coli) has a second catalytically important Mg2+ site. Sutendra G; Wong S; Fraser ME; Huber RE Biochem Biophys Res Commun; 2007 Jan; 352(2):566-70. PubMed ID: 17126292 [TBL] [Abstract][Full Text] [Related]
4. [Site-directed mutagenesis of Lac Z gene in Escherichia coli and the kinetic properties of the mutated enzymes]. Chu X; Bai Y; Yuan J Wei Sheng Wu Xue Bao; 1994 Jun; 34(3):206-12. PubMed ID: 7975556 [TBL] [Abstract][Full Text] [Related]
5. His-357 of beta-galactosidase (Escherichia coli) interacts with the C3 hydroxyl in the transition state and helps to mediate catalysis. Roth NJ; Rob B; Huber RE Biochemistry; 1998 Jul; 37(28):10099-107. PubMed ID: 9665715 [TBL] [Abstract][Full Text] [Related]
6. E461H-beta-galactosidase (Escherichia coli): altered divalent metal specificity and slow but reversible metal inactivation. Martinez-Bilbao M; Gaunt MT; Huber RE Biochemistry; 1995 Oct; 34(41):13437-42. PubMed ID: 7577931 [TBL] [Abstract][Full Text] [Related]
7. Substitutions for Glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity. Yuan J; Martinez-Bilbao M; Huber RE Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):527-31. PubMed ID: 7909660 [TBL] [Abstract][Full Text] [Related]
8. Quaternary structure, Mg2+ interactions, and some kinetic properties of the beta-galactosidase from Thermoanaerobacterium thermosulfurigenes EM1. Huber RE; Roth NJ; Bahl H J Protein Chem; 1996 Oct; 15(7):621-9. PubMed ID: 8968953 [TBL] [Abstract][Full Text] [Related]
9. The beta-galactosidase (Escherichia coli) reaction is partly facilitated by interactions of His-540 with the C6 hydroxyl of galactose. Roth NJ; Huber RE J Biol Chem; 1996 Jun; 271(24):14296-301. PubMed ID: 8662937 [TBL] [Abstract][Full Text] [Related]
10. Site specific mutants of beta-galactosidase show that Tyr-503 is unimportant in Mg2+ binding but that Glu-461 is very important and may be a ligand to Mg2+. Edwards RA; Cupples CG; Huber RE Biochem Biophys Res Commun; 1990 Aug; 171(1):33-7. PubMed ID: 2118347 [TBL] [Abstract][Full Text] [Related]
11. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity. Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273 [TBL] [Abstract][Full Text] [Related]
12. Determination of the roles of Glu-461 in beta-galactosidase (Escherichia coli) using site-specific mutagenesis. Cupples CG; Miller JH; Huber RE J Biol Chem; 1990 Apr; 265(10):5512-8. PubMed ID: 1969405 [TBL] [Abstract][Full Text] [Related]
13. Site-directed mutagenic replacement of glu-461 with gln in beta-galactosidase (E. coli): evidence that glu-461 is important for activity. Bader DE; Ring M; Huber RE Biochem Biophys Res Commun; 1988 May; 153(1):301-6. PubMed ID: 2897851 [TBL] [Abstract][Full Text] [Related]
14. Substitution for Asn460 cripples β-galactosidase (Escherichia coli) by increasing substrate affinity and decreasing transition state stability. Wheatley RW; Kappelhoff JC; Hahn JN; Dugdale ML; Dutkoski MJ; Tamman SD; Fraser ME; Huber RE Arch Biochem Biophys; 2012 May; 521(1-2):51-61. PubMed ID: 22446164 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis. Cha J; Auld DS Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337 [TBL] [Abstract][Full Text] [Related]
16. Differentiation of catalytic sites on Escherichia coli F1ATPase by laser photoactivated labeling with [3H]-2-Azido-ATP using the mutant beta Glu381Cys:epsilonSer108Cys to identify different beta subunits by their interactions with gamma and epsilon subunits. Grüber G; Capaldi RA Biochemistry; 1996 Apr; 35(13):3875-9. PubMed ID: 8672416 [TBL] [Abstract][Full Text] [Related]
17. A study of the relationships of interactions between Asp-201, Na+ or K+, and galactosyl C6 hydroxyl and their effects on binding and reactivity of beta-galactosidase. Xu J; McRae MA; Harron S; Rob B; Huber RE Biochem Cell Biol; 2004 Apr; 82(2):275-84. PubMed ID: 15060622 [TBL] [Abstract][Full Text] [Related]
18. Beta-galactosidases (Escherichia coli) with double substitutions show that Tyr-503 acts independently of Glu-461 but cooperatively with Glu-537. Roth NJ; Penner RM; Huber RE J Protein Chem; 2003 Nov; 22(7-8):663-8. PubMed ID: 14714733 [TBL] [Abstract][Full Text] [Related]
19. Glutamate-459 is important for Escherichia coli branching enzyme activity. Binderup K; Preiss J Biochemistry; 1998 Jun; 37(25):9033-7. PubMed ID: 9636047 [TBL] [Abstract][Full Text] [Related]
20. Engineering a new magnesium binding site in the subunit contact region of Escherichia coli inorganic pyrophosphatase. Parfenyev AN; Salminen A; Baykov AA; Lahti R Biochemistry (Mosc); 2000 Mar; 65(3):388-92. PubMed ID: 10739482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]