These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8619807)

  • 21. Generation of hydrogen peroxide by cerebral-cortex synaptosomes. Stimulation by ionomycin and plasma-membrane depolarization.
    Zoccarato F; Deana R; Cavallini L; Alexandre A
    Eur J Biochem; 1989 Mar; 180(2):473-8. PubMed ID: 2924776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphine inhibits glutamate exocytosis from rat cerebral cortex nerve terminals (synaptosomes) by reducing Ca2+ influx.
    Yang TT; Hung CF; Lee YJ; Su MJ; Wang SJ
    Synapse; 2004 Feb; 51(2):83-90. PubMed ID: 14618675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental diabetes enhances Ca2+ mobilization and glutamate exocytosis in cerebral synaptosomes from mice.
    Satoh E; Takahashi A
    Diabetes Res Clin Pract; 2008 Aug; 81(2):e14-7. PubMed ID: 18508149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caffeine facilitation of glutamate release from rat cerebral cortex nerve terminals (synaptosomes) through activation protein kinase C pathway: an interaction with presynaptic adenosine A1 receptors.
    Wang SJ
    Synapse; 2007 Jun; 61(6):401-11. PubMed ID: 17372967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synaptosomes possess an exocytotic pool of glutamate.
    Nicholls DG; Sihra TS
    Nature; 1986 Jun 19-25; 321(6072):772-3. PubMed ID: 3713864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. L-aspartate as an amino acid neurotransmitter: mechanisms of the depolarization-induced release from cerebrocortical synaptosomes.
    Cavallero A; Marte A; Fedele E
    J Neurochem; 2009 Aug; 110(3):924-34. PubMed ID: 19549007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of glutamate release by fluspirilene in cerebrocortical nerve terminals (synaptosomes).
    Wang SJ
    Synapse; 2002 Apr; 44(1):36-41. PubMed ID: 11842444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facilitation of glutamate release from rat cerebrocortical glutamatergic nerve terminals (synaptosomes) by phosphatidylserine and phosphatidylcholine.
    Yang TT; Wang SJ
    Synapse; 2009 Mar; 63(3):215-23. PubMed ID: 19072841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Presynaptic mechanisms underlying the alpha-lipoic acid facilitation of glutamate exocytosis in rat cerebral cortex nerve terminals.
    Wang SJ; Chen HH
    Neurochem Int; 2007 Jan; 50(1):51-60. PubMed ID: 16949179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aspartate release from rat hippocampal synaptosomes.
    Bradford SE; Nadler JV
    Neuroscience; 2004; 128(4):751-65. PubMed ID: 15464283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. (-)-Epigallocatechin gallate, the most active polyphenolic catechin in green tea, presynaptically facilitates Ca2+-dependent glutamate release via activation of protein kinase C in rat cerebral cortex.
    Chou CW; Huang WJ; Tien LT; Wang SJ
    Synapse; 2007 Nov; 61(11):889-902. PubMed ID: 17663453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes.
    Sanchez-Prieto J; Sihra TS; Nicholls DG
    J Neurochem; 1987 Jul; 49(1):58-64. PubMed ID: 2884280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms underlying the honokiol inhibition of evoked glutamate release from glutamatergic nerve terminals of the rat cerebral cortex.
    Sy HN; Wu SL; Wang WF; Wang SJ
    Synapse; 2008 Dec; 62(12):890-901. PubMed ID: 18792989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Botulinum toxin A blocks glutamate exocytosis from guinea-pig cerebral cortical synaptosomes.
    Sanchez-Prieto J; Sihra TS; Evans D; Ashton A; Dolly JO; Nicholls DG
    Eur J Biochem; 1987 Jun; 165(3):675-81. PubMed ID: 2439334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Src family tyrosine kinases differentially modulate exocytosis from rat brain nerve terminals.
    Baldwin ML; Cammarota M; Sim AT; Rostas JA
    Neurochem Int; 2006 Jul; 49(1):80-6. PubMed ID: 16500731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals.
    Ladera C; Martín R; Bartolomé-Martín D; Torres M; Sánchez-Prieto J
    Eur J Neurosci; 2009 Mar; 29(6):1131-40. PubMed ID: 19302149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facilitation of glutamate release from rat cerebral cortex nerve terminal by subanesthetic concentration propofol.
    Lu CW; Lin TY; Chiang HS; Wang SJ
    Synapse; 2009 Sep; 63(9):773-81. PubMed ID: 19489007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vitamin B2 inhibits glutamate release from rat cerebrocortical nerve terminals.
    Wang SJ; Wu WM; Yang FL; Hsu GS; Huang CY
    Neuroreport; 2008 Aug; 19(13):1335-8. PubMed ID: 18695519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorylation of synapsin I and MARCKS in nerve terminals is mediated by Ca2+ entry via an Aga-GI sensitive Ca2+ channel which is coupled to glutamate exocytosis.
    Coffey ET; Sihra TS; Nicholls DG; Pocock JM
    FEBS Lett; 1994 Oct; 353(3):264-8. PubMed ID: 7957871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Barium-evoked glutamate release from guinea-pig cerebrocortical synaptosomes.
    McMahon HT; Nicholls DG
    J Neurochem; 1993 Jul; 61(1):110-5. PubMed ID: 8099947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.