BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8619826)

  • 21. Characterization of salt-soluble forms of acetylcholinesterase from bovine brain.
    Liao J; Boschetti N; Mortensen V; Jensen SP; Koch C; Nørgaard-Pedersen B; Brodbeck U
    J Neurochem; 1994 Oct; 63(4):1446-53. PubMed ID: 7931296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted cross-linking of a molten globule form of acetylcholinesterase by the virucidal agent hypericin.
    Weiner L; Roth E; Mazur Y; Silman I
    Biochemistry; 1999 Aug; 38(35):11401-5. PubMed ID: 10471290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subunit association and glycosylation of acetylcholinesterase from monkey brain.
    Liao J; Nørgaard-Pedersen B; Brodbeck U
    J Neurochem; 1993 Sep; 61(3):1127-34. PubMed ID: 8360678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly-competent monomers or by ionic perturbation of the oligomer.
    Horowitz PM; Hua S; Gibbons DL
    J Biol Chem; 1995 Jan; 270(4):1535-42. PubMed ID: 7829481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nativelike intermediate on the unfolding pathway of pig kidney fructose-1,6-bisphosphatase.
    Reyes AM; Ludwig HC; Yañez AJ; Rodríguez PH; Slebe JC
    Biochemistry; 2003 Jun; 42(23):6956-64. PubMed ID: 12795590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms.
    Duval N; Massoulié J; Bon S
    J Cell Biol; 1992 Aug; 118(3):641-53. PubMed ID: 1639848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amphiphilic detergent-soluble acetylcholinesterase from Torpedo marmorata: characterization and conversion by proteolysis to a hydrophilic form.
    Stieger S; Brodbeck U
    J Neurochem; 1985 Jan; 44(1):48-56. PubMed ID: 3880582
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micellisation and immunoreactivities of dimeric beta-caseins.
    Yousefi R; Gaudin JC; Chobert JM; Pourpak Z; Moin M; Moosavi-Movahedi AA; Haertle T
    Biochim Biophys Acta; 2009 Dec; 1794(12):1775-83. PubMed ID: 19699329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular polymorphism of head acetylcholinesterase from adult houseflies (Musca domestica L.).
    Fournier D; Cuany A; Bride JM; Bergé JB
    J Neurochem; 1987 Nov; 49(5):1455-61. PubMed ID: 3668532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-state transition between molten globule and unfolded states of acetylcholinesterase as monitored by electron paramagnetic resonance spectroscopy.
    Kreimer DI; Szosenfogel R; Goldfarb D; Silman I; Weiner L
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12145-9. PubMed ID: 7991597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monomers and dimers of acetylcholinesterase in human meningioma are anchored to the membrane by glycosylphosphatidylinositol.
    Sáez-Valero J; Vidal CJ
    Neurosci Lett; 1995 Aug; 195(2):101-4. PubMed ID: 7478260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical properties of acetyl- and butyrylcholinesterase in human meningioma.
    Sáez-Valero J; Vidal CJ
    Biochim Biophys Acta; 1996 Dec; 1317(3):210-8. PubMed ID: 8988237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions between canine plasminogen and 8-anilino-1-naphthalene sulfonate: structural insights from a fluorescent probe.
    Carter DM; Kornblatt JA
    Cell Mol Biol (Noisy-le-grand); 2005 Sep; 51 Suppl():OL755-65. PubMed ID: 16171575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amphiphilic and hydrophilic forms of acetyl- and butyrylcholinesterase in human brain.
    Sáez-Valero J; Tornel PL; Muñoz-Delgado E; Vidal CJ
    J Neurosci Res; 1993 Aug; 35(6):678-89. PubMed ID: 8411269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The molecular weight and subunit structure of acetylcholinesterase preparations from the electric organ of the electric eel.
    Dudai Y; Silman I
    Biochem Biophys Res Commun; 1974 Jul; 59(1):117-24. PubMed ID: 4842295
    [No Abstract]   [Full Text] [Related]  

  • 36. Structural properties of acetylcholinesterase from eel electric tissue and bovine erythrocyte membranes.
    Berman JD
    Biochemistry; 1973 Apr; 12(9):1710-5. PubMed ID: 4699232
    [No Abstract]   [Full Text] [Related]  

  • 37. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe.
    Semisotnov GV; Rodionova NA; Razgulyaev OI; Uversky VN; Gripas' AF; Gilmanshin RI
    Biopolymers; 1991 Jan; 31(1):119-28. PubMed ID: 2025683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular forms of acetyl- and butyrylcholinesterase in human glioma.
    Sáez-Valero J; Poza-Cisneros G; Vidal CJ
    Neurosci Lett; 1996 Mar; 206(2-3):173-6. PubMed ID: 8710179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetylcholinesterase from the invertebrate Ciona intestinalis is capable of assembling into asymmetric forms when co-expressed with vertebrate collagenic tail peptide.
    Frederick A; Tsigelny I; Cohenour F; Spiker C; Krejci E; Chatonnet A; Bourgoin S; Richards G; Allen T; Whitlock MH; Pezzementi L
    FEBS J; 2008 Mar; 275(6):1309-22. PubMed ID: 18279391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural stability and composition of acetylcholinesterase purified by affinity chromatography from fresh electroplax tissue of Electrophorus electricus.
    Morrod PJ; Marshall AG; Clark DG
    Biochem Biophys Res Commun; 1975 Mar; 63(1):335-42. PubMed ID: 1125023
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.