These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8620855)

  • 1. Confocal microscopy analysis of living Xenopus eggs and the mechanism of cortical rotation.
    Larabell CA; Rowning BA; Wells J; Wu M; Gerhart JC
    Development; 1996 Apr; 122(4):1281-9. PubMed ID: 8620855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XMAP230 is required for the organization of cortical microtubules and patterning of the dorsoventral axis in fertilized Xenopus eggs.
    Cha BJ; Gard DL
    Dev Biol; 1999 Jan; 205(2):275-86. PubMed ID: 9917363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis.
    Elinson RP; Rowning B
    Dev Biol; 1988 Jul; 128(1):185-97. PubMed ID: 3289985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of microtubule polymerization relating to cortical rotation in Xenopus laevis eggs.
    Houliston E; Elinson RP
    Development; 1991 May; 112(1):107-17. PubMed ID: 1769322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface.
    Vincent JP; Oster GF; Gerhart JC
    Dev Biol; 1986 Feb; 113(2):484-500. PubMed ID: 3949075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs.
    Ubbels GA; Hara K; Koster CH; Kirschner MW
    J Embryol Exp Morphol; 1983 Oct; 77():15-37. PubMed ID: 6689175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation.
    Fujisue M; Kobayakawa Y; Yamana K
    Development; 1993 May; 118(1):163-70. PubMed ID: 19140289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule-mediated transport of organelles and localization of beta-catenin to the future dorsal side of Xenopus eggs.
    Rowning BA; Wells J; Wu M; Gerhart JC; Moon RT; Larabell CA
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1224-9. PubMed ID: 9037034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local inhibition of cortical rotation in Xenopus eggs by an anti-KRP antibody.
    Marrari Y; Terasaki M; Arrowsmith V; Houliston E
    Dev Biol; 2000 Aug; 224(2):250-62. PubMed ID: 10926764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary roles for dynein and kinesins in the Xenopus egg cortical rotation.
    Marrari Y; Rouvière C; Houliston E
    Dev Biol; 2004 Jul; 271(1):38-48. PubMed ID: 15196948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation.
    Miller JR; Rowning BA; Larabell CA; Yang-Snyder JA; Bates RL; Moon RT
    J Cell Biol; 1999 Jul; 146(2):427-37. PubMed ID: 10427095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern formation in amphibian embryos prevented from undergoing the classical "rotation response" to egg activation.
    Neff AW; Malacinski GM; Wakahara M; Jurand A
    Dev Biol; 1983 May; 97(1):103-12. PubMed ID: 6682386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gavity and Microtubules in Dorsoventral Polarization of The Xenopus Egg: (Microtubules/Gravity/Dorsoventral polarity/Xenopus laevis/Egg).
    Zisckind N; Elinson RP
    Dev Growth Differ; 1990 Dec; 32(6):575-581. PubMed ID: 37281273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs.
    Clarke EJ; Allan VJ
    Cell Motil Cytoskeleton; 2003 Sep; 56(1):13-26. PubMed ID: 12905528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs.
    Houliston E; Elinson RP
    J Cell Biol; 1991 Sep; 114(5):1017-28. PubMed ID: 1714912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of microtubule movement on isolated Xenopus egg cortices provides evidence that the cortical rotation involves dynein as well as Kinesin Related Proteins and is regulated by local microtubule polymerisation.
    Marrari Y; Clarke EJ; Rouvière C; Houliston E
    Dev Biol; 2003 May; 257(1):55-70. PubMed ID: 12710957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification.
    Vincent JP; Gerhart JC
    Dev Biol; 1987 Oct; 123(2):526-39. PubMed ID: 3653523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization and regulation of cortical microtubules during the first cell cycle of Xenopus eggs.
    Schroeder MM; Gard DL
    Development; 1992 Mar; 114(3):699-709. PubMed ID: 1618137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos.
    Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):157-64. PubMed ID: 8224533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.