BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8620880)

  • 1. Escherichia coli isocitrate dehydrogenase kinase/phosphatase. Overproduction and kinetics of interaction with its substrates by using intrinsic fluorescence and fluorescent nucleotide analogues.
    Rittinger K; Negre D; Divita G; Scarabel M; Bonod-Bidaud C; Goody RS; Cozzone AJ; Cortay JC
    Eur J Biochem; 1996 Apr; 237(1):247-54. PubMed ID: 8620880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isocitrate dehydrogenase kinase/phosphatase. Kinetic characteristics of the wild-type and two mutant proteins.
    Miller SP; Karschnia EJ; Ikeda TP; LaPorte DC
    J Biol Chem; 1996 Aug; 271(32):19124-8. PubMed ID: 8702587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isocitrate dehydrogenase kinase/phosphatase exhibits an intrinsic adenosine triphosphatase activity.
    Stueland CS; Eck KR; Stieglbauer KT; LaPorte DC
    J Biol Chem; 1987 Nov; 262(33):16095-9. PubMed ID: 2824478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of the predicted ATP binding site inactivates both activities of isocitrate dehydrogenase kinase/phosphatase.
    Stueland CS; Ikeda TP; LaPorte DC
    J Biol Chem; 1989 Aug; 264(23):13775-9. PubMed ID: 2547774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The "catalytic" triad of isocitrate dehydrogenase kinase/phosphatase from E. coli and its relationship with that found in eukaryotic protein kinases.
    Oudot C; Cortay JC; Blanchet C; Laporte DC; Di Pietro A; Cozzone AJ; Jault JM
    Biochemistry; 2001 Mar; 40(10):3047-55. PubMed ID: 11258918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoaffinity labelling shows that Escherichia coli isocitrate dehydrogenase kinase/phosphatase contains a single ATP-binding site.
    Varela I; Nimmo HG
    FEBS Lett; 1988 Apr; 231(2):361-5. PubMed ID: 2834232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism of adenine nucleotide binding to and hydrolysis by the Escherichia coli Rep monomer. 2. Application of a kinetic competition approach.
    Moore KJ; Lohman TM
    Biochemistry; 1994 Dec; 33(48):14565-78. PubMed ID: 7981218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and mechanistic insights into the bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase AceK.
    Zheng J; Yates SP; Jia Z
    Philos Trans R Soc Lond B Biol Sci; 2012 Sep; 367(1602):2656-68. PubMed ID: 22889914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locations of the regulatory sites for isocitrate dehydrogenase kinase/phosphatase.
    Miller SP; Chen R; Karschnia EJ; Romfo C; Dean A; LaPorte DC
    J Biol Chem; 2000 Jan; 275(2):833-9. PubMed ID: 10625615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus subtilis isocitrate dehydrogenase. A substrate analogue for Escherichia coli isocitrate dehydrogenase kinase/phosphatase.
    Singh SK; Miller SP; Dean A; Banaszak LJ; LaPorte DC
    J Biol Chem; 2002 Mar; 277(9):7567-73. PubMed ID: 11751849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence of aceK, the gene encoding isocitrate dehydrogenase kinase/phosphatase.
    Klumpp DJ; Plank DW; Bowdin LJ; Stueland CS; Chung T; LaPorte DC
    J Bacteriol; 1988 Jun; 170(6):2763-9. PubMed ID: 2836370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isocitrate dehydrogenase kinase/phosphatase: aceK alleles that express kinase but not phosphatase activity.
    Ikeda T; LaPorte DC
    J Bacteriol; 1991 Mar; 173(5):1801-6. PubMed ID: 1847910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
    Hsieh J; Moore KJ; Lohman TM
    J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of ATP binding to CheA containing tryptophan substitutions near the active site.
    Stewart RC
    Biochemistry; 2005 Mar; 44(11):4375-85. PubMed ID: 15766267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of adenine nucleotide binding to and hydrolysis by the Escherichia coli Rep monomer. 1. Use of fluorescent nucleotide analogues.
    Moore KJ; Lohman TM
    Biochemistry; 1994 Dec; 33(48):14550-64. PubMed ID: 7981217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size and sequence polymorphism in the isocitrate dehydrogenase kinase/phosphatase gene (aceK) and flanking regions in Salmonella enterica and Escherichia coli.
    Nelson K; Wang FS; Boyd EF; Selander RK
    Genetics; 1997 Dec; 147(4):1509-20. PubMed ID: 9409817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of isocitrate dehydrogenase kinase/phosphatase by 5'-[p-(fluorosulfonyl)benzoyl]adenosine is not due to the labeling of the invariant lysine residue found in the protein kinase family.
    Oudot C; Jault JM; Jaquinod M; Negre D; Prost JF; Cozzone AJ; Cortay JC
    Eur J Biochem; 1998 Dec; 258(2):579-85. PubMed ID: 9874226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic fluorescence of the P-glycoprotein multidrug transporter: sensitivity of tryptophan residues to binding of drugs and nucleotides.
    Liu R; Siemiarczuk A; Sharom FJ
    Biochemistry; 2000 Dec; 39(48):14927-38. PubMed ID: 11101309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter.
    Liu R; Sharom FJ
    Biochemistry; 1997 Mar; 36(10):2836-43. PubMed ID: 9062112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.