These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8621341)

  • 21. Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.
    Noe DA; Voto SJ; Hoffmann MS; Askew MJ; Gradisar IA
    J Biomed Eng; 1993 Jan; 15(1):23-6. PubMed ID: 8419676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
    Naemi R; Chatzistergos PE; Chockalingam N
    Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of loading conditions on stress in the barefooted heel pad.
    Spears IR; Miller-Young JE; Waters M; Rome K
    Med Sci Sports Exerc; 2005 Jun; 37(6):1030-6. PubMed ID: 15947730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imaging the shear modulus of the heel fat pads.
    Weaver JB; Doyley M; Cheung Y; Kennedy F; Madsen EL; Van Houten EE; Paulsen K
    Clin Biomech (Bristol, Avon); 2005 Mar; 20(3):312-9. PubMed ID: 15698705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Material properties of the heel fat pad across strain rates.
    Grigoriadis G; Newell N; Carpanen D; Christou A; Bull AMJ; Masouros SD
    J Mech Behav Biomed Mater; 2017 Jan; 65():398-407. PubMed ID: 27643676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shock absorption.
    Nack JD; Phillips RD
    Clin Podiatr Med Surg; 1990 Apr; 7(2):391-7. PubMed ID: 2189543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical properties of the human heel pad: a comparison between populations.
    Rchallis JH; Murdoch C; Winter SL
    J Appl Biomech; 2008 Nov; 24(4):377-81. PubMed ID: 19075307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diabetic effects on microchambers and macrochambers tissue properties in human heel pads.
    Hsu CC; Tsai WC; Hsiao TY; Tseng FY; Shau YW; Wang CL; Lin SC
    Clin Biomech (Bristol, Avon); 2009 Oct; 24(8):682-6. PubMed ID: 19619918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of the heel pad and shank soft tissue during impacts: a further resolution of a paradox.
    Pain MT; Challis JH
    J Biomech; 2001 Mar; 34(3):327-33. PubMed ID: 11182123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of the optimum heel pad stiffness: a modeling study.
    Lin CY; Chuang HJ; Cortes DH
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):585-593. PubMed ID: 28653146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variations in heel pad mechanical properties variation between children and young adults.
    Wang CL; Hsu TC; Shau YW; Wong MK
    J Formos Med Assoc; 1998 Dec; 97(12):850-4. PubMed ID: 9884488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dominant role of interface over knee angle for cushioning impact loading and regulating initial leg stiffness.
    Lafortune MA; Hennig EM; Lake MJ
    J Biomech; 1996 Dec; 29(12):1523-9. PubMed ID: 8945650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad.
    Freed AD; Diethelm K
    Biomech Model Mechanobiol; 2006 Nov; 5(4):203-15. PubMed ID: 16575573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The HPC-device: a method to quantify the heel pad shock absorbency.
    Jørgensen U; Larsen E; Varmarken JE
    Foot Ankle; 1989 Oct; 10(2):93-8. PubMed ID: 2807112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional morphology of heel fat pad: an in vivo computed tomography study.
    Campanelli V; Fantini M; Faccioli N; Cangemi A; Pozzo A; Sbarbati A
    J Anat; 2011 Nov; 219(5):622-31. PubMed ID: 21848602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical behaviour of heel pad tissue: experimental testing, constitutive formulation, and numerical modelling.
    Natali AN; Fontanella CG; Carniel EL; Young M
    Proc Inst Mech Eng H; 2011 May; 225(5):449-59. PubMed ID: 21755775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.
    Even-Tzur N; Weisz E; Hirsch-Falk Y; Gefen A
    Biomed Mater Eng; 2006; 16(5):289-99. PubMed ID: 17075164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shock absorbency of factors in the shoe/heel interaction--with special focus on role of the heel pad.
    Jørgensen U; Bojsen-Møller F
    Foot Ankle; 1989 Jun; 9(6):294-9. PubMed ID: 2744671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the mechanical properties of the heel pad between young and elderly adults.
    Hsu TC; Wang CL; Tsai WC; Kuo JK; Tang FT
    Arch Phys Med Rehabil; 1998 Sep; 79(9):1101-4. PubMed ID: 9749691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigations on the viscoelastic behaviour of a human healthy heel pad: in vivo compression tests and numerical analysis.
    Matteoli S; Fontanella CG; Carniel EL; Wilhjelm JE; Virga A; Corbinz N; Corvi A; Natali AN
    Proc Inst Mech Eng H; 2013 Mar; 227(3):334-42. PubMed ID: 23662350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.