BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8621360)

  • 1. Dimerization of A82846B, vancomycin and ristocetin: influence on antibiotic complexation with cell wall model peptides.
    Linsdell H; Toiron C; Bruix M; Rivas G; Menéndez M
    J Antibiot (Tokyo); 1996 Feb; 49(2):181-93. PubMed ID: 8621360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of capillary electrophoresis to measure dimerization of glycopeptide antibiotics.
    LeTourneau DL; Allen NE
    Anal Biochem; 1997 Mar; 246(1):62-6. PubMed ID: 9056183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of ristocetin A in complex with a bacterial cell-wall mimetic.
    Nahoum V; Spector S; Loll PJ
    Acta Crystallogr D Biol Crystallogr; 2009 Aug; 65(Pt 8):832-8. PubMed ID: 19622867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of complexes between some glycopeptide antibiotics and bacterial cell-wall analogues by electrospray- and capillary zone electrophoresis/electrospray-mass spectrometry.
    Hamdan M; Curcuruto O; Di Modugno E
    Rapid Commun Mass Spectrom; 1995; 9(10):883-7. PubMed ID: 7670152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation of A82846B, a glycopeptide antibiotic, complexed with its cell wall fragment: an asymmetric homodimer determined using NMR spectroscopy.
    Prowse WG; Kline AD; Skelton MA; Loncharich RJ
    Biochemistry; 1995 Jul; 34(29):9632-44. PubMed ID: 7626632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of the origins of a cooperative binding energy of dimerization.
    Williams DH; Maguire AJ; Tsuzuki W; Westwell MS
    Science; 1998 May; 280(5364):711-4. PubMed ID: 9563941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Getting closer to the real bacterial cell wall target: biomolecular interactions of water-soluble lipid II with glycopeptide antibiotics.
    Vollmerhaus PJ; Breukink E; Heck AJ
    Chemistry; 2003 Apr; 9(7):1556-65. PubMed ID: 12658654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of the complexes between vancomycin and cell-wall precursor analogs.
    Nitanai Y; Kikuchi T; Kakoi K; Hanamaki S; Fujisawa I; Aoki K
    J Mol Biol; 2009 Feb; 385(5):1422-32. PubMed ID: 18976660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of glycopeptide antibiotics with peptides that model bacterial cell-wall precursors.
    Lehmann C; Bunkóczi G; Vértesy L; Sheldrick GM
    J Mol Biol; 2002 May; 318(3):723-32. PubMed ID: 12054818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity and anti-cooperativity between ligand binding and the dimerization of ristocetin A: asymmetry of a homodimer complex and implications for signal transduction.
    Cho YR; Maguire AJ; Try AC; Westwell MS; Groves P; Williams DH
    Chem Biol; 1996 Mar; 3(3):207-15. PubMed ID: 8807847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the charge state on the structures and interactions of vancomycin antibiotics with cell-wall analogue peptides: experimental and theoretical studies.
    Yang Z; Vorpagel ER; Laskin J
    Chemistry; 2009; 15(9):2081-90. PubMed ID: 19156658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Chemical modification of glycopeptide antibiotics].
    Pavlov AIu; Preobrazhenskaia MN
    Bioorg Khim; 1998 Sep; 24(9):644-62. PubMed ID: 9813730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward an estimation of binding constants in aqueous solution: studies of associations of vancomycin group antibiotics.
    Williams DH; Searle MS; Mackay JP; Gerhard U; Maplestone RA
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1172-8. PubMed ID: 8433979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermochemistry of the interaction between peptides and vancomycin or ristocetin.
    Rodríguez-Tebar A; Vázquez D; Pérez Velázquez JL; Laynez J; Wadsö I
    J Antibiot (Tokyo); 1986 Nov; 39(11):1578-83. PubMed ID: 3793627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Link between biological signaling and increased enantioseparations of acids using glycopeptide antibiotics.
    Reilly J; Sanchez-Felix M; Smith NW
    Chirality; 2003 Nov; 15(9):731-42. PubMed ID: 14556209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative binding interactions of glycopeptide antibiotics.
    Shiozawa H; Chia BC; Davies NL; Zerella R; Williams DH
    J Am Chem Soc; 2002 Apr; 124(15):3914-9. PubMed ID: 11942828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The natural design of vancomycin family antibiotics to bind their target peptides.
    Waltho JP; Williams DH
    Ciba Found Symp; 1991; 158():73-86; discussion 87-91, 92-7. PubMed ID: 1935428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new and improved method for deglycosidation of glycopeptide antibiotics exemplified with vancomycin, ristocetin, and ramoplanin.
    Wanner J; Tang D; McComas CC; Crowley BM; Jiang W; Moss J; Boger DL
    Bioorg Med Chem Lett; 2003 Mar; 13(6):1169-73. PubMed ID: 12643936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-cooperative ligand binding and dimerisation in the glycopeptide antibiotic dalbavancin.
    Cheng M; Ziora ZM; Hansford KA; Blaskovich MA; Butler MS; Cooper MA
    Org Biomol Chem; 2014 Apr; 12(16):2568-75. PubMed ID: 24608916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of an asymmetric dimer relevant to the mode of action of the glycopeptide antibiotics.
    Groves P; Searle MS; Mackay JP; Williams DH
    Structure; 1994 Aug; 2(8):747-54. PubMed ID: 7994574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.