These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8621360)

  • 1. Dimerization of A82846B, vancomycin and ristocetin: influence on antibiotic complexation with cell wall model peptides.
    Linsdell H; Toiron C; Bruix M; Rivas G; Menéndez M
    J Antibiot (Tokyo); 1996 Feb; 49(2):181-93. PubMed ID: 8621360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of capillary electrophoresis to measure dimerization of glycopeptide antibiotics.
    LeTourneau DL; Allen NE
    Anal Biochem; 1997 Mar; 246(1):62-6. PubMed ID: 9056183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of ristocetin A in complex with a bacterial cell-wall mimetic.
    Nahoum V; Spector S; Loll PJ
    Acta Crystallogr D Biol Crystallogr; 2009 Aug; 65(Pt 8):832-8. PubMed ID: 19622867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of complexes between some glycopeptide antibiotics and bacterial cell-wall analogues by electrospray- and capillary zone electrophoresis/electrospray-mass spectrometry.
    Hamdan M; Curcuruto O; Di Modugno E
    Rapid Commun Mass Spectrom; 1995; 9(10):883-7. PubMed ID: 7670152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation of A82846B, a glycopeptide antibiotic, complexed with its cell wall fragment: an asymmetric homodimer determined using NMR spectroscopy.
    Prowse WG; Kline AD; Skelton MA; Loncharich RJ
    Biochemistry; 1995 Jul; 34(29):9632-44. PubMed ID: 7626632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of the origins of a cooperative binding energy of dimerization.
    Williams DH; Maguire AJ; Tsuzuki W; Westwell MS
    Science; 1998 May; 280(5364):711-4. PubMed ID: 9563941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Getting closer to the real bacterial cell wall target: biomolecular interactions of water-soluble lipid II with glycopeptide antibiotics.
    Vollmerhaus PJ; Breukink E; Heck AJ
    Chemistry; 2003 Apr; 9(7):1556-65. PubMed ID: 12658654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of the complexes between vancomycin and cell-wall precursor analogs.
    Nitanai Y; Kikuchi T; Kakoi K; Hanamaki S; Fujisawa I; Aoki K
    J Mol Biol; 2009 Feb; 385(5):1422-32. PubMed ID: 18976660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of glycopeptide antibiotics with peptides that model bacterial cell-wall precursors.
    Lehmann C; Bunkóczi G; Vértesy L; Sheldrick GM
    J Mol Biol; 2002 May; 318(3):723-32. PubMed ID: 12054818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity and anti-cooperativity between ligand binding and the dimerization of ristocetin A: asymmetry of a homodimer complex and implications for signal transduction.
    Cho YR; Maguire AJ; Try AC; Westwell MS; Groves P; Williams DH
    Chem Biol; 1996 Mar; 3(3):207-15. PubMed ID: 8807847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the charge state on the structures and interactions of vancomycin antibiotics with cell-wall analogue peptides: experimental and theoretical studies.
    Yang Z; Vorpagel ER; Laskin J
    Chemistry; 2009; 15(9):2081-90. PubMed ID: 19156658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Chemical modification of glycopeptide antibiotics].
    Pavlov AIu; Preobrazhenskaia MN
    Bioorg Khim; 1998 Sep; 24(9):644-62. PubMed ID: 9813730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward an estimation of binding constants in aqueous solution: studies of associations of vancomycin group antibiotics.
    Williams DH; Searle MS; Mackay JP; Gerhard U; Maplestone RA
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1172-8. PubMed ID: 8433979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermochemistry of the interaction between peptides and vancomycin or ristocetin.
    Rodríguez-Tebar A; Vázquez D; Pérez Velázquez JL; Laynez J; Wadsö I
    J Antibiot (Tokyo); 1986 Nov; 39(11):1578-83. PubMed ID: 3793627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Link between biological signaling and increased enantioseparations of acids using glycopeptide antibiotics.
    Reilly J; Sanchez-Felix M; Smith NW
    Chirality; 2003 Nov; 15(9):731-42. PubMed ID: 14556209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative binding interactions of glycopeptide antibiotics.
    Shiozawa H; Chia BC; Davies NL; Zerella R; Williams DH
    J Am Chem Soc; 2002 Apr; 124(15):3914-9. PubMed ID: 11942828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The natural design of vancomycin family antibiotics to bind their target peptides.
    Waltho JP; Williams DH
    Ciba Found Symp; 1991; 158():73-86; discussion 87-91, 92-7. PubMed ID: 1935428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new and improved method for deglycosidation of glycopeptide antibiotics exemplified with vancomycin, ristocetin, and ramoplanin.
    Wanner J; Tang D; McComas CC; Crowley BM; Jiang W; Moss J; Boger DL
    Bioorg Med Chem Lett; 2003 Mar; 13(6):1169-73. PubMed ID: 12643936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-cooperative ligand binding and dimerisation in the glycopeptide antibiotic dalbavancin.
    Cheng M; Ziora ZM; Hansford KA; Blaskovich MA; Butler MS; Cooper MA
    Org Biomol Chem; 2014 Apr; 12(16):2568-75. PubMed ID: 24608916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of an asymmetric dimer relevant to the mode of action of the glycopeptide antibiotics.
    Groves P; Searle MS; Mackay JP; Williams DH
    Structure; 1994 Aug; 2(8):747-54. PubMed ID: 7994574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.