These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 862138)

  • 41. Altered angiotensin II-induced small artery contraction during the development of hypertension in spontaneously hypertensive rats.
    Endemann D; Touyz RM; Li JS; Deng LY; Schiffrin EL
    Am J Hypertens; 1999 Jul; 12(7):716-23. PubMed ID: 10411369
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vascular smooth muscle reactivity in normotensive and hypertensive rats.
    Spector S; Fleisch JH; Maling HM; Brodie BB
    Science; 1969 Dec; 166(3910):1300-1. PubMed ID: 5350331
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endothelium-dependent relaxation of hypertensive resistance arteries is not impaired under all conditions.
    Li J; Bukoski RD
    Circ Res; 1993 Feb; 72(2):290-6. PubMed ID: 8418984
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dietary calcium and magnesium supplements in spontaneously hypertensive rats and isolated arterial reactivity.
    Mäkynen H; Kähönen M; Arvola P; Wuorela H; Vapaatalo H; Pörsti I
    Br J Pharmacol; 1995 Aug; 115(8):1455-62. PubMed ID: 8564205
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of pioglitazone and rosiglitazone on vascular function of mesenteric resistance arteries in rat genetic hypertension.
    Mendizábal Y; Llorens S; Nava E
    Pharmacology; 2011; 88(1-2):72-81. PubMed ID: 21846998
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Hypersensitization of alpha-adrenoreceptor of artery smooth muscle in hypertensive rats and hypertensive patients].
    Cao YX; Li J; Liu H; Luo GG
    Yao Xue Xue Bao; 2006 Oct; 41(10):973-7. PubMed ID: 17184116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. c-Src, ERK1/2 and Rho kinase mediate hydrogen peroxide-induced vascular contraction in hypertension: role of TXA2, NAD(P)H oxidase and mitochondria.
    García-Redondo AB; Briones AM; Martínez-Revelles S; Palao T; Vila L; Alonso MJ; Salaices M
    J Hypertens; 2015 Jan; 33(1):77-87. PubMed ID: 25380156
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intracellular angiotensin II as a regulator of muscle tone in vascular resistance vessels. Pathophysiological implications.
    De Mello WC
    Peptides; 2016 Apr; 78():87-90. PubMed ID: 26944358
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrical property and chemical sensitivity of vascular smooth muscles in normotensive and spontaneously hypersensitive rats.
    Kuriyama H; Suzuki H
    J Physiol; 1978 Dec; 285():409-24. PubMed ID: 745102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cellular basis for increased sensitivity of vascular smooth muscle in spontaneously hypertensive rats.
    Hermsmeyer K
    Circ Res; 1976 Jun; 38(6 Suppl 2):53-7. PubMed ID: 5207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Peripheral and Cerebral Resistance Arteries in the Spontaneously Hypertensive Heart Failure Rat: Effects of Stilbenoid Polyphenols.
    Lee DI; Acosta C; Anderson CM; Anderson HD
    Molecules; 2017 Feb; 22(3):. PubMed ID: 28264510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mesenteric vasculature reactivity to noradrenaline during the development of renal hypertension in the rat.
    Collis MG; Alps BJ
    Blood Vessels; 1977 May; 14(3):189-92. PubMed ID: 851646
    [No Abstract]   [Full Text] [Related]  

  • 53. Pathological role of a constitutively active population of alpha(1D)-adrenoceptors in arteries of spontaneously hypertensive rats.
    Gisbert R; Ziani K; Miquel R; Noguera MA; Ivorra MD; Anselmi E; D'Ocon P
    Br J Pharmacol; 2002 Jan; 135(1):206-16. PubMed ID: 11786496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pharmacological effects of alpha-methyldopa, alpha-methylnorepinephrine, and octopamine on rat arteriolar, arterial, and terminal vascular smooth.
    Altura BM
    Circ Res; 1975 Jun; 36(6 Suppl 1):233-40. PubMed ID: 1093755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural remodeling of resistance arteries in uremic hypertension.
    New DI; Chesser AM; Thuraisingham RC; Yaqoob MM
    Kidney Int; 2004 May; 65(5):1818-25. PubMed ID: 15086922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intracellular Ca2+ and force generation determined in resistance arteries of normotensive and hypertensive rats.
    Bukoski RD; Lastelic BA; Xue H; Li J; Bian K
    J Hypertens; 1994 Jan; 12(1):15-21. PubMed ID: 8157941
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The fourth Volhard lecture: cardiovascular structural adaptation; its role in the initiation and maintenance of primary hypertension.
    Folkow B
    Clin Sci Mol Med Suppl; 1978 Dec; 4():3s-22s. PubMed ID: 153216
    [No Abstract]   [Full Text] [Related]  

  • 58. [Basic and neurogenic vascular tonus].
    Udel'nov MG; Kulagina VP
    Usp Sovrem Biol; 1972; 74(1):28-53. PubMed ID: 4565877
    [No Abstract]   [Full Text] [Related]  

  • 59. Dual NEP/ECE inhibition improves endothelial function in mesenteric resistance arteries of 32-week-old SHR.
    Lemkens P; Spijkers LJ; Meens MJ; Nelissen J; Janssen B; Peters SL; Schiffers PM; De Mey JG
    Hypertens Res; 2017 Aug; 40(8):738-745. PubMed ID: 28298655
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of U46619-, endothelin-1- or phenylephrine-induced changes in cellular Ca2+ profiles and Ca2+ sensitisation of constriction of pressurised rat resistance arteries.
    Shaw L; O'Neill S; Jones CJ; Austin C; Taggart MJ
    Br J Pharmacol; 2004 Feb; 141(4):678-88. PubMed ID: 14744813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.