These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8621637)

  • 1. Kinetic and structural probing of the precleavage synaptic complex (type 0) formed during phage Mu transposition. Action of metal ions and reagents specific to single-stranded DNA.
    Wang Z; Namgoong SY; Zhang X; Harshey RM
    J Biol Chem; 1996 Apr; 271(16):9619-26. PubMed ID: 8621637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crucial role for DNA supercoiling in Mu transposition: a kinetic study.
    Wang Z; Harshey RM
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):699-703. PubMed ID: 8290584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Step-arrest mutants of phage Mu transposase. Implications in DNA-protein assembly, Mu end cleavage, and strand transfer.
    Kim K; Namgoong SY; Jayaram M; Harshey RM
    J Biol Chem; 1995 Jan; 270(3):1472-9. PubMed ID: 7836417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic studies on E. coli DNA topoisomerase I: divalent ion effects.
    Domanico PL; Tse-Dinh YC
    J Inorg Biochem; 1991 May; 42(2):87-96. PubMed ID: 1649911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a pre-cleavage synaptic complex that is an early intermediate in Tn10 transposition.
    Sakai J; Chalmers RM; Kleckner N
    EMBO J; 1995 Sep; 14(17):4374-83. PubMed ID: 7556079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition.
    Kuo CF; Zou AH; Jayaram M; Getzoff E; Harshey R
    EMBO J; 1991 Jun; 10(6):1585-91. PubMed ID: 1851088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural transition of d(G4T4G4) from antiparallel to parallel G-quartet induced by divalent cations.
    Miyoshi D; Nakao A; Sugimoto N
    Nucleic Acids Res Suppl; 2001; (1):259-60. PubMed ID: 12836363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Winding of the DNA helix by divalent metal ions.
    Xu YC; Bremer H
    Nucleic Acids Res; 1997 Oct; 25(20):4067-71. PubMed ID: 9321659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc destabilizes DNA Watson-Crick pairs at AGCT.
    Kang S; Wells RD
    J Biol Chem; 1994 Apr; 269(13):9528-32. PubMed ID: 8144538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA.
    Surette MG; Buch SJ; Chaconas G
    Cell; 1987 Apr; 49(2):253-62. PubMed ID: 3032448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phage Mu transpososome core: DNA requirements for assembly and function.
    Savilahti H; Rice PA; Mizuuchi K
    EMBO J; 1995 Oct; 14(19):4893-903. PubMed ID: 7588618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. True reversal of Mu integration.
    Au TK; Pathania S; Harshey RM
    EMBO J; 2004 Aug; 23(16):3408-20. PubMed ID: 15282550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism.
    Mizuuchi K; Adzuma K
    Cell; 1991 Jul; 66(1):129-40. PubMed ID: 1649006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination.
    Benjamin KR; Abola AP; Kanaar R; Cozzarelli NR
    J Mol Biol; 1996 Feb; 256(1):50-65. PubMed ID: 8609613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of transposition of bacteriophage Mu: structure of a transposition intermediate.
    Craigie R; Mizuuchi K
    Cell; 1985 Jul; 41(3):867-76. PubMed ID: 2988793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides.
    Faulhammer D; Famulok M
    J Mol Biol; 1997 Jun; 269(2):188-202. PubMed ID: 9191064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNase protection analysis of the stable synaptic complexes involved in Mu transposition.
    Mizuuchi M; Baker TA; Mizuuchi K
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9031-5. PubMed ID: 1656459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercoiling-dependent site-specific binding of HU to naked Mu DNA.
    Kobryn K; Lavoie BD; Chaconas G
    J Mol Biol; 1999 Jun; 289(4):777-84. PubMed ID: 10369760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.