These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 8621682)
1. Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation. Kowaltowski AJ; Castilho RF; Grijalba MT; Bechara EJ; Vercesi AE J Biol Chem; 1996 Feb; 271(6):2929-34. PubMed ID: 8621682 [TBL] [Abstract][Full Text] [Related]
2. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. Kowaltowski AJ; Castilho RF; Vercesi AE FEBS Lett; 1996 Jan; 378(2):150-2. PubMed ID: 8549822 [TBL] [Abstract][Full Text] [Related]
3. 3,5,3'-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation. Castilho RF; Kowaltowski AJ; Vercesi AE Arch Biochem Biophys; 1998 Jun; 354(1):151-7. PubMed ID: 9633610 [TBL] [Abstract][Full Text] [Related]
4. Mangiferin, a natural occurring glucosyl xanthone, increases susceptibility of rat liver mitochondria to calcium-induced permeability transition. Andreu GL; Delgado R; Velho JA; Curti C; Vercesi AE Arch Biochem Biophys; 2005 Jul; 439(2):184-93. PubMed ID: 15979560 [TBL] [Abstract][Full Text] [Related]
5. The role of low (< or = 1 mM) phosphate concentrations in regulation of mitochondrial permeability: modulation of matrix free Ca2+ concentration. Kushnareva YE; Haley LM; Sokolove PM Arch Biochem Biophys; 1999 Mar; 363(1):155-62. PubMed ID: 10049510 [TBL] [Abstract][Full Text] [Related]
6. Ca2+-independent permeabilization of the inner mitochondrial membrane by peroxynitrite is mediated by membrane protein thiol cross-linking and lipid peroxidation. Gadelha FR; Thomson L; Fagian MM; Costa AD; Radi R; Vercesi AE Arch Biochem Biophys; 1997 Sep; 345(2):243-50. PubMed ID: 9308896 [TBL] [Abstract][Full Text] [Related]
7. Oxidative damage of mitochondria induced by Fe(II)citrate is potentiated by Ca2+ and includes lipid peroxidation and alterations in membrane proteins. Castilho RF; Meinicke AR; Almeida AM; Hermes-Lima M; Vercesi AE Arch Biochem Biophys; 1994 Jan; 308(1):158-63. PubMed ID: 7508707 [TBL] [Abstract][Full Text] [Related]
8. Effect of cyclosporin A and trifluoperazine on rat liver mitochondria swelling and lipid peroxidation. Nepomuceno MF; Pereira-da-Silva L Braz J Med Biol Res; 1993 Oct; 26(10):1019-23. PubMed ID: 8312833 [TBL] [Abstract][Full Text] [Related]
9. Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Wudarczyk J; Debska G; Lenartowicz E Arch Biochem Biophys; 1999 Mar; 363(1):1-8. PubMed ID: 10049493 [TBL] [Abstract][Full Text] [Related]
11. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane. Kushnareva YE; Sokolove PM Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426 [TBL] [Abstract][Full Text] [Related]
12. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes. Rizzuto R; Pitton G; Azzone GF Eur J Biochem; 1987 Jan; 162(2):239-49. PubMed ID: 3803384 [TBL] [Abstract][Full Text] [Related]
13. Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Reed DJ; Savage MK Biochim Biophys Acta; 1995 May; 1271(1):43-50. PubMed ID: 7599224 [TBL] [Abstract][Full Text] [Related]
14. Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. Castilho RF; Kowaltowski AJ; Meinicke AR; Bechara EJ; Vercesi AE Free Radic Biol Med; 1995 Mar; 18(3):479-86. PubMed ID: 9101238 [TBL] [Abstract][Full Text] [Related]
15. Involvement of the ADP/ATP carrier in permeabilization processes of the inner mitochondrial membrane. de Macedo DV; Nepomuceno ME; Pereira-da-Silva L Eur J Biochem; 1993 Aug; 215(3):595-600. PubMed ID: 8354266 [TBL] [Abstract][Full Text] [Related]
16. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria. Beatrice MC; Palmer JW; Pfeiffer DR J Biol Chem; 1980 Sep; 255(18):8663-71. PubMed ID: 7410387 [TBL] [Abstract][Full Text] [Related]
17. Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Santos AC; Uyemura SA; Lopes JL; Bazon JN; Mingatto FE; Curti C Free Radic Biol Med; 1998 Jun; 24(9):1455-61. PubMed ID: 9641263 [TBL] [Abstract][Full Text] [Related]
18. Reoxygenation-induced mitochondrial damage is caused by the Ca2+-dependent mitochondrial inner membrane permeability transition. Tanaka T; Hakoda S; Takeyama N Free Radic Biol Med; 1998 Jul; 25(1):26-32. PubMed ID: 9655518 [TBL] [Abstract][Full Text] [Related]
19. The mitochondrial membrane permeability transition induced by inorganic phosphate or inorganic arsenate. A comparative study. Bravo C; Chávez E; Rodríguez JS; Moreno-Sánchez R Comp Biochem Physiol B Biochem Mol Biol; 1997 May; 117(1):93-9. PubMed ID: 9180017 [TBL] [Abstract][Full Text] [Related]
20. Calcium- and phosphate-dependent release and loading of glutathione by liver mitochondria. Savage MK; Jones DP; Reed DJ Arch Biochem Biophys; 1991 Oct; 290(1):51-6. PubMed ID: 1898099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]