These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8621682)

  • 21. Relation between the activities reducing disulfides and the protection against membrane permeability transition in rat liver mitochondria.
    Wudarczyk J; Debska G; Lenartowicz E
    Arch Biochem Biophys; 1996 Mar; 327(2):215-21. PubMed ID: 8619605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thyroxine induces cyclosporin A-insensitive, Ca2+-dependent reversible permeability transition pore in rat liver mitochondria.
    Malkevitch NV; Dedukhova VI; Simonian RA; Skulachev VP; Starkov AA
    FEBS Lett; 1997 Jul; 412(1):173-8. PubMed ID: 9257715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aluminum as an inducer of the mitochondrial permeability transition.
    Toninello A; Clari G; Mancon M; Tognon G; Zatta P
    J Biol Inorg Chem; 2000 Oct; 5(5):612-23. PubMed ID: 11085652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition.
    Kristal BS; Park BK; Yu BP
    J Biol Chem; 1996 Mar; 271(11):6033-8. PubMed ID: 8626387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iron complexing activity of mangiferin, a naturally occurring glucosylxanthone, inhibits mitochondrial lipid peroxidation induced by Fe2+-citrate.
    Andreu GP; Delgado R; Velho JA; Curti C; Vercesi AE
    Eur J Pharmacol; 2005 Apr; 513(1-2):47-55. PubMed ID: 15878708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible mechanism for formation and regulation of the palmitate-induced cyclosporin A-insensitive mitochondrial pore.
    Belosludtsev KN; Belosludtseva NV; Mironova GD
    Biochemistry (Mosc); 2005 Jul; 70(7):815-21. PubMed ID: 16097947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca2+ acting at the external side of the inner mitochondrial membrane can stimulate mitochondrial permeability transition induced by phenylarsine oxide.
    Kowaltowski AJ; Castilho RF
    Biochim Biophys Acta; 1997 Dec; 1322(2-3):221-9. PubMed ID: 9452768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flufenamic acid as an inducer of mitochondrial permeability transition.
    Jordani MC; Santos AC; Prado IM; Uyemura SA; Curti C
    Mol Cell Biochem; 2000 Jul; 210(1-2):153-8. PubMed ID: 10976768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane instability in respiring mitochondria: role of phosphate.
    Sitaramam V; Rao NM
    Indian J Biochem Biophys; 1992 Apr; 29(2):103-14. PubMed ID: 1398702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tamoxifen inhibits induction of the mitochondrial permeability transition by Ca2+ and inorganic phosphate.
    Custodio JB; Moreno AJ; Wallace KB
    Toxicol Appl Pharmacol; 1998 Sep; 152(1):10-7. PubMed ID: 9772195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Permeability pathways of Ca2+ efflux from mitochondria: H+ specificity and reversibility of the permeability defect.
    Pfeiffer DR; Broekemeier KM; Igbavboa U; Reers M; Riley WW
    Adv Exp Med Biol; 1988; 232():15-23. PubMed ID: 3145678
    [No Abstract]   [Full Text] [Related]  

  • 32. Butylated hydroxytoluene and inorganic phosphate plus Ca2+ increase mitochondrial permeability via mutually exclusive mechanisms.
    Sokolove PM; Haley LM
    J Bioenerg Biomembr; 1996 Apr; 28(2):199-206. PubMed ID: 9132419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+.
    Petronilli V; Cola C; Bernardi P
    J Biol Chem; 1993 Jan; 268(2):1011-6. PubMed ID: 7678245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Release of mitochondrial glutathione and calcium by a cyclosporin A-sensitive mechanism occurs without large amplitude swelling.
    Savage MK; Reed DJ
    Arch Biochem Biophys; 1994 Nov; 315(1):142-52. PubMed ID: 7979391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of alpha-tocopherol in the regulation of mitochondrial permeability transition.
    Yorimitsu M; Muranaka S; Sato EF; Fujita H; Abe K; Yasuda T; Inoue M; Utsumi K
    Physiol Chem Phys Med NMR; 2004; 36(2):95-107. PubMed ID: 16268121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Control of mitochondrial Mg++-efflux].
    Höser N; Dawczynski H; Winnefeld K; Dargel R
    Acta Biol Med Ger; 1978; 37(1):19-29. PubMed ID: 100996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III.
    Belyaeva EA; Glazunov VV; Korotkov SM
    Chem Biol Interact; 2004 Dec; 150(3):253-70. PubMed ID: 15560892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 1,3-diene probes for detection of triplet carbonyls in biological systems.
    Velosa AC; Baader WJ; Stevani CV; Mano CM; Bechara EJ
    Chem Res Toxicol; 2007 Aug; 20(8):1162-9. PubMed ID: 17630714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphate increases mitochondrial reactive oxygen species release.
    Oliveira GA; Kowaltowski AJ
    Free Radic Res; 2004 Oct; 38(10):1113-8. PubMed ID: 15512800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca2+-stimulated mitochondrial reactive oxygen species generation and permeability transition are inhibited by dibucaine or Mg2+.
    Kowaltowski AJ; Naia-da-Silva ES; Castilho RF; Vercesi AE
    Arch Biochem Biophys; 1998 Nov; 359(1):77-81. PubMed ID: 9799563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.